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Abstract—This study presents the analysis of runway water 

depth predictions based on different placement of water 

depth gauges. Fuzzy logic method is used to set up the 

numerical runway water depth models for prediction. The 

influenced parameters of models include runway average 

macrotexture depth, drainage length, rainfall intensity and 

cross slope. The results showed acceptable runway water 

depth predictions can be obtained through the placement of 

either normal numbers of water depth gauges or fewer 

gauges in the experiment. 

Index Terms—frunway water depth; fuzzy logic modeling; 

water level gauge 

I.  INTRODUCTION 

According to the 2016 ICAO Safety Report [1], runway 

safety related accidents include runway 

excursion/incursion, undershoot/overshoot, tail-strike and 

hard landing which accounted for the majority (53%) of 

all global accidents during 2015. From 2007 to 2016, 

there were totally 43 civil transportation category aircraft 

occurrences in Taiwan [2]. Of those 43 occurrences, 

runway excursions overall were the most frequent and a 

total of 12 occurrences were reported. All these 12 

occurrences occurred during the landing phase of flight. 

The most common causes/factors to these runway 

excursion occurrences were flight crew and weather 

related factors. ICAO Annex 14 [3] recommends when 

water is on a runway, a description of the runway surface 

conditions should be made available using the following 

terms: DAMP, WET and STANDING WATER. The 

definition of STANDING WATER is that: a runway 

where more than 25 per cent of the runway surface area 

within the required length and width being used is covered 

by water more 3 mm deep which is difficult to assess even 

by an experienced observer. In ICAO Annex 6, this 

runway condition is called as a contaminated runway. If 

runway water accumulates to a high enough depth such as 

3mm, dynamic hydroplaning may be occurred when tire 

travelling through this water during aircraft landing. Once 

dynamic hydroplaning occurs, the water pressure in front 

of tire(s) may equal to the weight of landing aircraft and 
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separates tire(s) from the runway resulting in a loss of 

contact with the runway. With one or more tires loss 

contact with the runway, directional control of aircraft 

becomes more difficult and runway excursion may occur 

with the combination of poor pilot handling or control. In 

October 2016, the U.S. Federal Aviation Administration 

required that airport operators should declare runway 

condition code of the Runway Condition Assessment 

Matrix (RCAM) to pilots [4]. Runway water depth is one 

of these parameters in the RCAM However, to declare 

runway condition to pilots need expensive labor costs and 

runway water depth cannot be fully assessed by airport 

operators. On the other hand, safety concerns and high 

maintenance and construction costs incurred if real-time 

measuring instruments were used. Furthermore, the 

requirement t to assess whether the accumulated runway 

water impact aircraft operation or not, water depths on 

runway is a key factor to accident investigation and 

needed to be clarified as soon as possible. 

The development of water depth predictor has 

developed since 1971. To predict the water depth on 

various ungrooved pavements, Gallaway [5] developed an 

equation based on the tests at the Texas Transportation 

Institute (hereinafter TTI equation). The TTI equation was 

determined by regression method to fit the experimental 

test data. The TTI equation was widely used or 

recommended in the field of highway or runway water 

depth prediction. From the test data as listed in [5], if the 

datum plane was at top of texture, the multiple correlation 

coefficients (R2) of the predicted water depths by using 

the regression equations were unsatisfactory. In 1984, 

Wambold et al. [6], developed a computer program in 

Pennsylvania Transportation Institute to predict water 

depth analytically. However, it predicts significantly 

lower water depths than did the TTI equation which was 

identified in reference [3]. 

Although this TTI equation could estimate the 

pavement water depth, there were some disadvantages, 

such as, shallow runway macro texture depths, large time 

scale of rainfall rate (per hour), and large deviation 

between the experimental data and the derived regression 

models. The authors therefore would like to provide a new 

model with the incorporation of different rainfall rates 

Journal of Traffic and Logistics Engineering Vol. 8, No. 1, June 2020

©2020 Journal of Traffic and Logistics Engineering 12
doi: 10.18178/jtle.8.1.12-17

mailto:peida@ttsb.gov.tw
mailto:yannian@ttsb.gov.tw


from 7mm to 14mm in a 6-minute rainfall period, deeper 

runway macro texture depths ranging from 0.4 to 1.2 mm, 

and different cross slopes in the experiment.   

Instead of using regression method to estimate runway 

water depths, an alternate approach to predict runway 

water depth was developed through Fuzzy Logic 

Modeling (FLM) technique. In earlier development of the 

fuzzy logic algorithm, Zadeh used the fuzzy sets to 

simulate physical parameters with membership functions. 

In 1985, Takagi and Sugeno [7] used internal functions, 

instead of the fuzzy sets, in developing the fuzzy logic 

algorithm. Tan and Xie [8] applied the same theory to 

simulate microelectronic processes with very good 

accuracy in 1995. Since year 1998, the technique of FLM 

has been applied to other applications, such as: nonlinear 

unsteady aerodynamics modeling [9]-[11], diagnostic of 

engine integrity [12], aircraft structural health monitoring 

[13], by Lan and Chang et al. A preliminary study on the 

prediction of runway water depths verified accurate 

results could be obtained through FLM modeling method 

[14]. The successfully application of FLM method to 

different areas demonstrated the technique has an 

excellent data correlation capability and predictive 

accuracy in modeling systems with nonlinear, unsteady 

and complex characteristics. 

A real time observation and report of 3 mm runway 

water depth is practically impossible at current stage. 

Information gaps of aircraft operations on wet runway 

exist between the user (flight crew) and the provider 

(aerodrome) needs to be filled. The main objective of this 

study is using Gallaway’s test data, either reduced or un-

reduced, to present the model development through FLM 

technique and to demonstrate the capability of resulting 

models to predict accurate runway water depths in real 

time. The experimental plans will use 3 to 6 sets of water 

level gauge to measure instantaneous water depth. To find 

the best gauge location in the experiment, a preliminary 

study is arranged and FLM method is used to set up the 

numerical models in this paper. 

II. THEORETICAL DEVELOPMENT 

To set up the relations between input variables and the 

accumulated water depth of the runway model, FLM 

technique is adopted in the present study. Modeling 

process start from dividing the input variables data into 

many groups, functional relations are set up between each 

input and output data group. Membership functions are 

used to quantify the number of relationship between input 

and output variables. Two main tasks, one is the 

identification of the coefficients of the internal functions 

which is called parameter identification, the other one is 

structure identification to identify the optimal structure of 

fuzzy cells of the model, are involved in the FLM process. 

Details of the FLM technique are described in the follows. 

The fuzzy logic model uses many internal functions to 

cover the tested data ranges of the input variables as 

follows:  
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where pr
i
, r=0, 1, 2,…, k, are the coefficients of internal 

functions yi, and k is number of input variables, yi is 

denoted as an estimated output, and xr are the variables of 

the input data. 

The values of each input variable are divided into 

several ranges, each of which represents a membership 

function with A(xr) as its membership grade. One 

membership function from each variable constitutes a 

fuzzy cell. For i
th

 cell, the corresponding membership 

grades are represented by Ar
i
(xr), r=0, 1, 2,…, k. The 

membership functions allow the membership grades of the 

internal functions for a given set of input variables to be 

calculated. The membership functions partition the input 

space into many fuzzy subspaces, which are called the 

fuzzy cells. The total number of fuzzy cells 

is kr NNNNn  21 . For a variable xr, 

the number of membership function is Nr. In this study, 

the overlapped triangular membership function is used to 

represent the grades of internal functions. 

A fuzzy cell is formed by taking one membership 

function from each variable. The total number of cells is 

the number of possible combinations by taking one 

membership function from each input variable. For every 

cell, it has a fuzzy rule to guide the input and output 

relations. The rule of the i
th

 cell is stated as: 
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i
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where i = 1, 2, …, n the index of the cells, n is the total 

number of cells of the model; ),,,,( 21 kr

i xxxxP   

is the internal function with parameters  
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denotes the membership function for xk. Each function 

covers a certain range of input variables. 

In each fuzzy cell, the contribution to the cell output is 

based on the internal function, equation (2). The final 

prediction of the outcome is the weighted average of all 

cell outputs after the process of fuzzy rule inference. The 

output estimated by the fuzzy logic algorithm 

corresponding to the j
th
 input (x1,j,x2,j,…, xr,j,… xk,j) is as 

follows: 
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In equation (3), product[A
i
(x1,j),…, A

i
(xr,j),…, A

i
(xk,j)] is 

the weighted value of the i
th

 cell; and the index j of the 

data set, where j=1,2,…, m, and m is the total number of 

the test data; and the “product” stands for product 

operator of its elements in this study.  

To identify the coefficients of the internal functions, the 

unknown coefficients are adjusted with the gradient-

descent method by minimizing the sum of squared errors 

(SSEs) and the structure of fuzzy cells is optimized by 

Journal of Traffic and Logistics Engineering Vol. 8, No. 1, June 2020

©2020 Journal of Traffic and Logistics Engineering 13



maximizing the squared multiple correlation coefficients 

(R
2
) using equations (4) and (5) respectively. 
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where 
jŷ  is the output of the fuzzy logic model at point j, 

yj is the test data used for the model training at point j; y  

is the average value of all test data, and m is the total 

number of test data. The model training is to determine 

the unknown coefficients of the internal functions, pr
i
, by 

maximizing the value of R
2
. These coefficients are 

determined by an iterative equation (6) to minimize the 

SSEs. 
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whereαr is the step size in the gradient method, subscript 

index t denotes the iteration sequence. The iteration 

during the search sequence stops when one of the 

specified criteria, the cost function, relative error or 

maximum iteration numbers, is met. 

In the fuzzy logic model, the structure of fuzzy cells is 

indicated by the number of membership functions. The 

model structure identification is tied up with parameter 

identification. For a fuzzy logic model with multiple 

variables, the structure is the combination of the numbers 

and forms of the membership functions assigned to all 

input variables. Since the sequence defines the one-to-one 

relationship between the numbers and the forms for each 

variable, the structure can be uniquely described by the 

numbers. The optimal structure of fuzzy cells is identified 

by maximizing the R
2
 (equation 5). The best model 

structure searching flow is shown graphically in Fig. 1. 

Fig. 2 shows the flowchart of parameter identification 

processes. 

Start

t=0

Input variables 

normalization

Membership

Function

calculation

Internal 

function 

calculation

Initial 

parameters

SSE calculation

Estimated result 

calculation

Stop

SSE < ε1

SSE < ε2

t < tmax

Measured 

test result

i

rp 0,

A(xr)

ip

jŷ
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Figure 1. Flowchart of parameter identification process 
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Figure 2. Best model structure searching flow 

III. RNUWAY WATER DEPTH MODELING  

A. Data for Modeling  

Gallaway’s test data as listed in table 10, surface No. 1 

of reference 6, is used for the present study. Variables 

influence the measured water depths including average 

macrotexture depth, drainage length, rainfall intensity and 

cross slope. In the original data, test ranges of each 

variable were chosen to meet the characteristics of Texas 

highway pavements. Since the cross slope of typical 

runway usually covers the range from 0.4% to 1.5%, 

measured water depths which tested at 4% cross slope of 

Gallaway’s data were not adopted in setting up the fuzzy 

logic model. Therefore, only 80 records of data were used 

to set up the numerical model through FLM method. 

B. Fuzzy Logic Models 

According to reference 6, water depths were measured 

at regularly spaced drainage lengths for various 

combinations of rainfall intensity and pavement cross 

slope. Locations of water depth measurement were at 

approximately six feet intervals, which were 6.0, 13.0, 

18.5 and 24.0 feet of drainage length. From previous 

research (reference 15), the established models showed a 

99.75% accuracies in the prediction of runway water 

depths by using the whole records of data in the training 

of fuzzy logic model. The model predictive accuracy is 

unknown if test data used for model training were 

measured at non-equidistant intervals. For this purpose, 

the present study first uses these 80 records of data to set 

up the fuzzy logic model (hereinafter model I). Then, 

water depths measured at 18.5 or at 13.0 feet of drainage 

length are removed from the data set. The same FLM 

method is applied again to set up fuzzy logic models using 

these two reduced data sets, one containing only data 

measured at 6.0 feet, 13.0 feet and 24.0 feet of drainage 

length (hereinafter model II) , and the other one 

containing only data measured at 6.0 feet, 18.5 feet and 

24.0 feet of drainage length (hereinafter model III). Water 

depths at 18.5 feet and 13.0 feet of drainage length are 

estimated by using the established model II and III 

respectively. The results are then compared with the 

results obtained from model I. This procedure is applied 

in the present study to test the placement of water level 

gauge flexibility and predictive accuracy of its established 

fuzzy logic models. 

The runway water depth model is assumed to depend 

on four variables: average macrotexture depth, drainage 

length, rainfall intensity and cross slope. A functional 

relation is established between runway water depth and its 
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influencing variables for modeling as shown in equation 

(7). 

d = f (S, I, T, L)  (7) 

where d represents water depth, S is the cross slope, I the 

rainfall intensity, T the average macrotexture depth, and L 

the drainage path length. The template is used to format 

your paper and style the text. All margins, column widths, 

line spaces, and text fonts are prescribed; please do not 

alter them. You may note peculiarities. For example, the 

head margin in this template measures proportionately 

more than is customary. This measurement and others are 

deliberate, using specifications that anticipate your paper 

as one part of the entire proceedings, and not as an 

independent document. Please do not revise any of the 

current designations. 

IV. NUMERICAL RESULTS AND DISCUSSIONS  

Through the fuzzy logic modeling processes, the final 

runway water depth models are established by using the 

above mentioned un-reduced (4 water level gauges) and 

reduced (3 water level gauges) data sets in the model 

trainings. In Table I, the numbers below each input 

variables represent the number of membership functions. 

The total number of fuzzy rules (n) in each model is the 

product of each numbers which presented in column 6. 

The last column shows the final squared multiple 

correlation coefficients (R
2
).  

TABLE I.  FUZZY RULE NUMBERS AND SQUARED CORRELATION 

COEFFICIENTS OF FLM MODELS 

 S I T L n R2 

Model I 2 3 5 4 120 0.9989 

Model II 7 3 5 4 420 0.9999 

Model III 3 3 6 4 216 0.9998 

 
The R

2
 values of model I, II and III are all close to 1, 

which means the predictions of runway water depths are 

nearly exactly the same as the actual empirical values of 

data. This indicates that the measured water depths can be 

accurately estimated by all the established models.  

 

Figure 3. Comparison of water depths predicted by model I and II at 
fixed drainage length L = 13.0 feet for cross slope=0.5% 

 
Figure 4. Comparison of water depths predicted by model I and II at 

fixed drainage length L = 13.0 feet for cross slope=1.0% 

 

Figure 5. Comparison of water depths predicted by model I and II at 
fixed drainage length L = 13.0 feet for cross slope=2.0% 

 

Figure 6. Comparison of water depths predicted by model I and II at 
fixed drainage length L = 13.0 feet for cross slope=3.0% 

The established models II and III are used to predict 

water depths at 18.5 feet and 13.0 feet of drainage length 

to test the use of fewer gauges and the placement of water 

level gauge at non-equidistant intervals and the use of 
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fewer gauges. Fig. 3-6 show the comparisons between the 

measured water depths and the water depths predicted by 

model I and II at fixed drainage path length L = 13.0 feet 

for varying rainfall intensity, cross slope, and average 

macrotexture depth. The comparisons of model I and III at 

fixed drainage path length L = 18.5 feet are shown in Fig. 

7-10. 

 

Figure 7. Comparison of water depths predicted by model I and III at 

fixed drainage length L = 18.5 feet for cross slope=0.5% 

 

Figure 8. Comparison of water depths predicted by model I and III at 
fixed drainage length L = 18.5 feet for cross slope=1.0% 

 
Figure 9. Comparison of water depths predicted by model I and III at 

fixed drainage length L = 18.5 feet for cross slope=2.0% 

 
Figure 10. Comparison of water depths predicted by model I and III at 

fixed drainage length L = 18.5 feet for cross slope=3.0% 

The predicted sums of squared errors (SSE) from 

model III and model II are compared with those results 

from model I as shown in Table II. 

TABLE II.  FUZZY RULE NUMBERS AND SQUARED CORRELATION 

COEFFICIENTS OF FLM MODELS  

 At 13.0 feet of drainage 

length 

At 18.5 feet of drainage 

length 

model model I model II model I model III 

SSE 4.68x10-5 7.53 x10-4 6.65 x10-5 6.92 x10-4 

 
In Table II, the SSE’s of model I show deviations of 

prediction from actual empirical values of data at 13.0 and 

18.5 feet of drainage length which are all smaller by a 

scale of 10
-1 

than those deviations of prediction of either 

model III or model II. Instead of using water depth 

measurement data at 3 locations, model I used data which 

measured at 4 locations in setting up the model. This 

indicates that a tight fitting of the model to the data can be 

obtained if more water level gauges are used in collecting 

the test data. Although Model II and Model III used fewer 

gauges and measurement data in setting up the models, 

their predictions showed satisfactory results could be 

obtained. The established FLM models can be used by 

aerodrome and airport control tower personnel to monitor 

and broadcasting runway status to assist flight crew’s 

takeoff and landing decision making. 

V. CONCLUDING REMARKS  

The objective of this study was to present an alternate 

analytical method to predict water depths on the runway 

and to illustrate its predictive accuracy. This method was 

based on Gallaway’s test data to establish the water depth 

model through FLM technique. The numerical results 

showed that the established model could predict relatively 

accurate water depths. In real time application, the 

established model can assist aerodrome and airport control 

tower personnel to monitor and broadcasting runway 

water depth condition with respect to potential 

hydroplaning risk. To improve the accuracy of real time 

broadcasting capability, a smaller scale of rainfall 

intensity, such as rainfall rate per 6 minutes, can be 
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adopted in the future to develop runway water depth 

prediction models. 
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