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Abstract—Road network serves as a critical link in 

sustainable energy and environment development. To fulfill 

the transportation needs and to adapt to the region 

development, the road network is often organized 

hierarchically and asymmetrically with various road levels 

and spatial structures. The complexity of the road network 

therefore varies. Location models locate usually facilities on 

a given road network, the most complex one, and the 

influence from the complexity of road network in finding 

optimal locations is not well-studied. This paper aims to 

investigate how the complexity of a road network affects the 

optimal facility locations by applying the widely-applied p-

median model. In a specific case study, the main result 

indicates that an increase in complexity, up to a certain level, 

can obviously improve the solution; the complexity beyond 

that level does not always lead to better solutions. A detailed 

sensitivity analysis of algorithm and facility number further 

provides insight into computation complexity and location 

problems from intra-urban to inter-urban.  

 

Index Terms—information system, transportation system, 

spatial optimization, location models, heuristics, road 

network 

 

I. INTRODUCTION 

Movements of people and goods take place between 

origins and destinations on the road network; therefore, 

the road network is a necessary component in facilitating 

these spatial movements. A facility usually serves as a 

destination of the movements, thus, a facility optimally 

located on the road network is a desired goal in many 

decision-making processes since it minimizes travel 

distance [1], [2]. In the process of urbanization, the road 

network expansion exerts extensive and profound 

influences on regional systems [3]. A complexly 

expanded road network is often organized hierarchically 

and asymmetrically with various road levels and spatial 

structures in order to fulfill transportation needs and to 

adapt to facility development. The complexity of a road 

network increases along with the increase of road levels 

and spatial structures, thus finding the optimal facility 

locations could become computationally complicated and 

time-consuming. 
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In locating facilities, a road network is usually given 

[4]. Peeters and Thomas [5] claimed that the more 

complex a road network, the higher probability of 

identifying a more optimal solution. Following which, 

many studies always work with a most complex road 

network and focus on aggregating the demand points and 

using a simple distance measure, such as the Euclidean 

distance, to simplify the problem and make it 

computationally treatable [6], [7]. In addition, the given 

road network in these studies is simulated, and the 

number of facility locations is limited to represent various 

scenarios. In using a real road network for finding 

optimal locations in rural areas, Carling et al. [1], [8] 

demonstrate that the level of aggregation needs to be 

more sophisticated and the distance measure needs to be 

as accurate as possible in order to avoid suboptimal 

locations in areas where demands and road network are 

asymmetrically distributed. Few studies use a real road 

network with changing complexity, along with the road 

levels and the spatial structures, in finding optimal 

facility locations in both intra-urban and inter-urban 

scenarios. 

In a pre-test conducted by Rebreyend et al. [9], the 

complexity of the road network is found influential in 

finding the optimal location in rural areas. However, the 

trade-off among more optimal solutions, computational 

complexity and spatial distributions of facilities in intra-

urban and inter-urban scenarios has not yet been studied. 

This paper aims to investigate how the changes in road 

network complexity influence the optimal facility 

locations by applying the widely used p-median model. In 

addition, to provide further insight into computation 

complexity and location problems from intra-urban to 

inter-urban, a detailed sensitivity analysis of four 

algorithms and various facility numbers is conducted. 

The four algorithms are: greedy search [10]; CPLEX; 

simulated annealing [11]; and imp-Genetic algorithm [12]. 

Each algorithm works in a different way in solving the p-

median model. The facility numbers vary from 5 to 50 

(with a common difference of 5) to simulate intra-urban 

and inter-urban location distributions in the case of 

Dalarna province, Sweden. The size of Dalarna, as well 

as its structure, is similar to the regions of Vermont and 

New Hampshire in the US. 
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The entire road network database provided by the 

official National Road Database (NVDB)
1
 in Sweden 

consists of 2.6 million roads and 30 million nodes, where 

0.15 million roads and 1.8 million nodes are distributed in 

the Dalarna region. The road network in the Dalarna 

region has a hierarchical structure composed of ten levels 

of road. The European highways are at the biggest level, 

representing the simplest road networks, where there is a 

limited number of candidate nodes for locating facilities. 

The local and private streets are at the smallest level and 

represent the most complex road network, with a huge 

number of candidate nodes for locating facilities. 

The remaining part of the paper is organized as follows. 

In Section 2, we present the p-median model and some 

related previous studies that guide us in the model choice. 

Section 3 describes the data applied in the case study and 

settings for the sensitivity check. Section 4 illustrates the 

main results, and Section 5 concludes the paper. 

II. THE P- MEDIAN MODEL  

The p-median model was first introduced by Hakimi 

[13], and it has since then been widely used in 

transportation and location-allocation studies [14]. 
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Total number of demand points in the space of interestQ 

Total number of candidates for locating facilitiesN   

Total number of potential facilitiesp 

The weight associate to each demand node i
iw 

Distance between demand node i and potential facility j
ijd    

Given that demand nodes are fixed in the network, the 

model finds the optimal facility locations that minimize 

the total travel distance for all demand points to the 

closest facility. Specifically, the objective function is to 
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minimize the sum of weighted distances between demand 

points and their respective nearest facilities.  

The constraint (2) requires that each demand point is 

assigned to exactly one facility. The constraint (3) 

ensures that exactly p facility locations are to be chosen 

among the N candidates. The constraint (6) links the 

location variables and the allocation variables. What’s 

more, value constraints for  and  insure that the 

location variables(X) and allocation variables(Y) are 

binary. 

To find the optimal location for p facilities to fulfill the 

demand using the p-median model is NP-hard [15], and 

optimal solutions to large problems are difficult to obtain 

[16]. Francis et al. [7] conducted a literature review of the 

p-median model, in which about half of the 40 reviewed 

articles are studies based on real data. The largest number 

of candidate nodes in the reviewed studies was some 

70, 000 candidate nodes. However, p was relatively small 

(<20) in those studies. The review also showed that 

almost all distance measures are Euclidean distance and 

rectilinear distance. 

Many recent studies have been developed to illustrate 

the greater efficiency of network distance versus 

Euclidean distance, in the analysis of network-

constrained objects or phenomena [17]. Schilling et al. [6] 

examined the Euclidean distance, network distance and a 

randomly generated network distance. Both Euclidean 

distance and network distance were found to have high 

computational efficiency and yield better solution quality. 

The problem scale in their study was, however, small and 

they did not study a network with different levels of 

candidate nodes. Although Euclidean distance is most 

widely used, the network distance in most cases is more 

accurate in measuring the travel distance between two 

points, since the Euclidean distance leads to suboptimal 

solutions in an unpredictable way. Xie and Yan [18], and 

Shiode [19], found that measuring distance by connecting 

the straight line between locations could possibly 

overestimate the clustering tendency of the network. The 

network distance is more appropriate for spatial 

phenomena or activities constrained by transportation 

networks, especially in the field of microscopic analysis 

[20]. Peeters and Thomas [5] examined the performance 

of the p-median model in different network topologies by 

changing the nature of the links. They found that there is 

a difference in optimal solutions when the links are 

changed, but they did not check the computational efforts 

in finding the optimal solutions. Following them, the 

topologies of the network have been studied, taking the 

computational effort into account ([4], [21]-[23]). 

However, on the one hand, these studies are mainly based 

on fully connected Euclidean and rectilinear networks or 

networks with varying numbers of radial and rectilinear 

arcs. On the other hand, the number of candidate nodes 

and links are limited, which means that the simulation 

cannot represent the real road network well. 

The complexity of a real road network varies along 

with the road levels and the spatial structures, which 

cannot be simply represented by nodes and links in 

topology. Apart from Rebreyend et al. [9], very few 
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studies have examined the impact of varying the 

complexities of road network on the optimal facility 

locations and their spatial distributions. 

III. HELPFUL HINTS DATA AND SETTINGS FOR 

SENSITIVITY CHECK 

A. Data 

Dalarna is a province located in the middle of Sweden 

with an area of 28,189 km
2
. The population of Dalarna 

amounts to 231,934, in December 2015 (Statistic 

Sweden
2
). The population is geo-coded and registered on 

250 meters by 250 meters squares. The center of each 

registry square represents one demand point. Each 

demand point is assigned a weight, corresponding to the 

population number in that square. There are 15,729 

weighted demand points representing the whole 

population in this region. Fig. 1 shows that the population 

in the studied region is highly asymmetrically distributed, 

with the majority living in the southeast part. 

 

Figure 1. Map of the Dalarna region showing 250-by-250 meter squares 

of inhabitants 

Fig. 2 shows the complete digitalized representation of 

the road network in Dalarna, with its hierarchical 

structure corresponding to 10 road levels. Fig. 2(a) shows 

that the main structure of the road network is composed 

of levels 0-5, which are European highways, national and 

regional roads with a total length of 5,479 km. The spatial 

structure of the road network of these big roads 

corresponds to the spatial distribution of the population, 

as illustrated in Fig. 1. The European highway forms the 

simplest road network with a limited number of candidate 

nodes for locating facilities. While the most complex road 

network includes all the roads up to the smallest level of 

the local and private streets, where there is a huge number 

of candidate nodes for locating facilities. Fig. 2(b) shows 
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the small roads at levels 6-9, with a total length of 33,975 

km. 

 

Figure 2. (a) Main structure of the road network corresponding to road 
levels 0-5 in Dalarna, Sweden (b) Local dense road network 

corresponding to road levels 6-9 in Dalarna, Sweden 

Specifically, there are 1,797,939 nodes (the start and 

the end of the roads), and 1,964,801 road segments in the 

whole road network in Dalarna. Approximately, one node 

can be found asymmetrically distributed every 20meters 

on the road network. In order to have a valid measure to 

make comparisons between different network densities, 

the whole network is used to calculate all the network 

distances between the demand points and the candidate 

nodes, which can also ensure that the variation of 

candidate points from different network densities does 

not affect the distance measure. However, considering the 

computation complexity in solving the NP-hard p-median 

model, the whole network with all candidate nodes is not 

practical for use with most locations problems. A 500 by 

500 meter grid aggregation on all density level roads was 

conducted for mainly two reasons: one reason is to enable 

all the density levels computationally feasible, and the 

other reason is to practically stick to the real world 

situation, since it is very rare to locate a facility every 20 

meters. 

TABLE I.  NUMBER OF NODES IN DIFFERENT ROAD NETWORK 

COMPLEXITIES THAT CORRESPOND TO THE INCLUDED ROAD LEVELS 

UNDER AGGREGATION LEVEL OF 500M BY 500M IN DALARNA

Road  

Densities 

Density Level Number of 

Nodes 

Length 

(km) 

0 European highway 452 167 
0 – 1 +Primary national 

highway 
1,994 

883 

0– 2 +Primary national road 2,909 1,299 

0 – 3 +Secondary national 

road 
3,926 

1,725 

0– 4 +Primary regional road 6,735 2,923 

0 – 5 +Secondary regional 

road 
12,417 

5,479 

0 – 6 +Local aterial road 12,552 5,631 

0 – 7 +Local collector road 20,718 10,964 

0 – 8 +Local rural aterial 

road 
45,336 

23,086 

0 – 9 +Local rural collector 
road 

67,020 
39,454 

 

Journal of Traffic and Logistics Engineering Vol. 7, No. 2, December 2019

©2019 Journal of Traffic and Logistics Engineering 66

THE GRID 



In order to calculate the network distances, the 

connectivity of the nodes in the network is first checked. 

There are 9020 not connected and they are removed. All 

remaining nodes are tagged to the closest demand origin, 

or to the closest intersection node. In each grid, at the 

most, one node is kept as a potential candidate node for 

optimal location by applying three criteria sequentially. 

First, we choose the node connects with most road 

segments. If there are none, we then select the node at the 

highest density level. If there are none there, we at last 

pick the node which is closest to the center of the grid. 

Table I summarizes the numbers of nodes according to 

the complexity of the road network; the number of nodes 

increases when the complexity of the road network 

increases by including more levels of roads. There are 

452 nodes in the simplest road network, and 67, 020 

nodes in the most complex road network. 

As the coordinates of the residents (demand points) do 

not perfectly coincide with the nodes in the road network, 

correspondingly, we use the nearest node in the network 

to represent the location of residents. The average 

distance between the residents’ node and the nearest 

network node is 62 meters, which means the 

approximation does not introduce much difference to the 

final results.  

The travel distance between the demand point and the 

nearest facility is one key variable that is in the objective 

function of the p-median model, therefore, the distance 

measure influences the solutions for optimal facility 

locations. Carling et al. ([1], [8]) investigated, empirically, 

the consequences of different distance measures for the 

optimal location of multiple service centers in rural areas. 

They stated that the shortest travel time or minimal cost 

along an existing network intuitively seems to be the 

most accurate measure for most settings, yet it is 

infrequently employed. One reason for this is the 

difficulty and cost associated with collecting data on 

travel time. Another reason is the complication which 

arises in modelling the inherent variation in travel time. 

This paper employs network distance as the distance 

measure. 

B. Settings for Sensitivity Check 

Heuristics and approximation algorithms are the 

predominant techniques used for solving the p-median 

location problem, as described and explored in the recent 

literature ([24]-[27]). Four algorithms that work rather 

differently in solving the p-median model to find the 

solutions of optimal facility locations are chosen: CPLEX; 

greedy search [10]; simulated annealing [11]; and imp-

Genetic algorithm [12]. 

If the p-median model is formulated as a 0-1 binary 

programming problem it can then be solved by a Mixed 

Integer Problem (MIP) solver by using a branch-and-cut 

approach. The CPLEX from IBM is a commonly used 

software package for solving optimization problems. 

Following Rebreyend et al. [12], some parameters of the 

solver have been tuned in order to adapt CPLEX to work 

on large problem instances, specifically, removing default 

computation time limits, allowing intermediate data 

storage, and tuning branch-and-cut search tree strategies, 

according to the manual
3
. 

The standard greedy algorithm for the p-median model 

was studied by Cornuejols et al. [28]. Resende and 

Werneck [29] conducted a constructive greedy algorithm 

to perform the most profitable move among candidates to 

get the best local minimum in the path. The Greedy 

algorithm follows the problem-solving heuristic of 

finding the locally optimal choice at each stage, with the 

hope of getting a global optimum. It always chooses the 

optimal choice at the current stage, rather than 

considering all other conditions to ensure finding a global 

optimal. This can be characterized as being ‘short 

sighted’, but it is easy to implement and can achieve 

acceptable results within a short time. 

Simulated annealing (SA) is one commonly used 

heuristics for solving the p-median model. Murray and 

Church [30] proposed a basic SA algorithm for the p-

median model. Levanova and Loresh [31] studied the SA 

heuristic that used the 1-interchange neighborhood 

structure. Carling et al. ([1], [8]), and Rebreyend et al. [9] 

used tuned SA to solve specific p-median model in a real 

road network context. The basic idea of SA is not only 

accepting all the better results in the search process, but 

also accepting some worse results based on certain 

probabilities. It is simple to implement and can provide 

high quality solutions to many problems. The 

performances of SA are sensitive to the values of control 

parameters. In this study, we employ the same parameters 

of SA to the same real world network data as employed 

by Rebreyend et al. [9]. The specific parameter settings 

and the implementation of SA follow Zhao et al. [32]. 

This includes their dynamic scheme to update the 

temperature, which allows the algorithm to have setting 

for efficiency and accuracy, regardless of the size of the 

input. After testing with various parameter settings, we 

found that the scheme used to increase and decrease the 

temperature works well to avoid the search being trapped 

in the local optimal for a long time, and finally provides 

satisfying results. 

Genetic algorithms (GAs) are another commonly used 

heuristics that are designed based on mimicking the 

evolution process. New solutions are based on previous 

solutions in ways that are reminiscent of the interaction of 

genes. Most previous studies used a classical string 

representation, in which each chromosome is represented 

as a single string of length p, embedding the index of the 

selected facilities or nodes. Thorough treatments of GAs 

can be found in ([33]-[36]). Bozkaya et al. [37] found 

GAs could produce solutions that are better than 

exchange algorithms; however, the convergence is very 

slow. Alp et al. [38] proposed a GA which is simpler and 

produces good solutions faster. Following Correa et al. 

[39], Rebreyend et al. [12] proposed an improved genetic 

algorithm, called imp-GA, to solve large-scale p-median 

problems. The imp-GA used in this paper follows the 

description and settings as used by Rebreyend et al. [12]. 
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odms.studio.help/pdf/gscplex.pdf  
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The facility numbers vary from 5 to 50 (with a 

common difference of 5) to simulate the intra-urban to 

inter-urban location distributions. We run CPLEX and 

Greedy once, due to the deterministic property of the 

methods. Since SA is sensitive to its starting point, we 

randomly select 3 different initial configurations to 

conduct the SA, and keep the solution with the minimum 

objective function value (OFV); each run contains 20,000 

iterations. As for imp-GA, we set 3 runs with 100 

iterations, due to its higher requirement for computation 

time and computer memory. Max running time is 48 

hours for each p and network density level. In this paper, 

the CPLEX version 12.6, Linux 64 bits is used. All the 

programs are coded with C and compiled using GCC 

version 4.8.2, and they are launched under a system of 

Linux (Kernel 3.11-2-amd64). The computer has a 

memory of 32 G, CPU of Intel Core i7-3770. 

IV. HELPFUL HINTS 

A. Sensitivity to Complexity Levels 

Fig. 3 shows how worse the optimal solutions found at 

each complexity level of the road network compared to 

the best solution found for a selection of p (results for all 

tested p can be found in Appendix, Figures A1-A3). 

Specifically, the improvement of the solution is measured 

by checking the difference between the OFV in the 

current complexity level, and the optimal OFV found at 

the same/other level:   

. 

The figure reveals that the solutions found from 

candidate nodes on the simplest road network, namely, 

the European highways (level 0), are 85 to 95 percent 

worse than the optimal solutions that can be found. 

However, the figure also shows that there is a limit to 

how complex the road network needs to be to find the 

best solutions. In general, when the complexity of the 

road network continues to increase after including road 

level 5, the solutions barely improve, and even deteriorate. 

 

Figure 3. Variations from algorithms Greedy search, SA and imp-GA in 
excess distances (in percent), compared to the best solutions for an 

increased density level. The x-axis shows the density level. The y-axis 

shows the difference in percentage between the best solution and the 
current. 

The figure reveals that the solutions found from 

candidate nodes on the simplest road network, namely, 

the European highways (level 0), are 85 to 95 percent 

worse than the optimal solutions that can be found. 

However, the figure also shows that there is a limit to 

how complex the road network needs to be to find the 

best solutions. In general, when the complexity of the 

road network continues to increase after including road 

level 5, the solutions barely improve, and even deteriorate. 

B. Sensitivity to Algorithms 

As is shown in Fig. 3, in general, the algorithms 

behave in a similar pattern of obvious improvment when 

the complexity increases from the simplest level 0 to 

levels up to, and including, 0-5 (ca. 12,500 nodes). When 

the complexity level increases from 0-5, the OFVs from 

SA deteriorate, the OFVs from the Greedy search neither 

improve nor deteriorate, and the OFVs from imp-GA 

show some very small improvements (also see Table II).  

TABLE II.  THE OPTIMAL OBJECTIVE FUNCTION VALUE FOUND ON DIFFERENT ROAD NETWORK DENSITIES BY TESTED ALGORITHMS FOR 

VARIOUS P. 

CPLEX Included complexity 
level 

0 Can only provide results at density level 0 and fails at upper levels, due to the limitation of 
computer memory 

(The software aborts before completion on our computer with 32 Gb of memory). Optimal solution in  
meters 

81681 

Imp-GA Included complexity 

level 

0-5 0-7 0-8 0-5 0-6 0-8 0-9 0-8 0-8 0-8 

Optimal solution in  

meters 
19624.095 11075.455 8278.562 6631.992 5715.777 4998.492 4600.623 4250.913 3960.126 3738.607 

SA Included complexity 
level 

0-2 0-2 0-4 0-6 0-5 0-4 0-6 0-4 0-4 0-4 

Optimal solution in  
meters 

19715.020 11259.282 8625.458 7094.882 6155.251 5465.033 5013.738 4611.287 4306.700 4066.063 

Greedy Included complexity 
level 

0-5 0-5 0-5 0-5 0-5 0-5 0-5 0-5 0-5 0-5 

Optimal solution in  

meters 

19685.104 11134.182 8316.884 6698.967 5804.399 5122.226 4708.024 4349.791 4049.786 3796.301 

p  5 10 15 20 25 30 35 40 45 50 
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Table II further shows how the best OFVs derived 

from the four algorithms vary among these algorithms. 

Note that the CPLEX algorithm that gives the exact 

solutions fails to produce a result higher than density 

level 0. The reason for this is that the location problem 

addressed in this study is too complex, even when the 

representation of the road network is at the simplest level 

(level 0). Imp-GA gives the best solutions. However, for 

the same facility number, the improvements of the OFVs 

are rather small compared to Greedy and SA, and the 

largest improvement is only 2.78%, i.e. approximately 

122 meters shorter in network travel distance. 

Table II also shows that the algorithms show a 

different requirement of network complexity for finding 

better solutions by including the road levels. However, 

the differences between the Greedy and imp-GA OFVs 

are just 1-2 percent. For p=20, or larger, the SA gives an 

OFV that is 8 to 9 percent worse than the OFV from the 

imp-GA. Whereas, the computation time and 

computation effort of imp-GA become tremendously 

large, so that the results cannot be derived for the most 

complex of the road networks within the time threshold 

of 48 hours, which is not the case for Greedy and SA 

C. Sensitivity to Facility Numbers 

Based on Fig. 3 and Table II, the changes of facility 

numbers do not introduce obvious changes either in the 

complexity level or among the algorithms. Fig. 4 

visualizes the spatial distribution of the optimal locations 

found by imp-GA. 

 

Figure 4. Distribution of optimal locations (p from 5 to 40) found by 

imp-GA on the study area Dalarna 

The road network has hierarchical road levels and an 

asymmetrical structure, where the European highway 

forms the simplest road network with 452 candidate 

nodes, while the most complex road network includes all 

the roads up to the smallest level of the local and private 

streets, with 67, 020 candidate nodes. 

In general, the optimal locations found when p is low 

remain as optimal locations when p increases. The 

locations are mostly on the major roads in the road 

network and correspond very well with the complexity 

structure, as shown in Fig. 2(a). This further indicates that 

the increase in complexity of the road network above 

level 0-5 does have a limited influence on the spatial 

distribution of the optimal facility locations. To make the 

location-allocation practical in transportation and land-

use planning, a location that decreases the travel distance 

a few hundred meters is not appealing, compared to the 

risk of losing the attraction of customers due to poor 

accessibility on a denser road network, especially when 

the road network is asymmetrically distributed.   

V. CONCLUDING DISCUSSION 

This paper aims to investigate how the changes of road 

network complexity influence the optimal facility 

locations by applying the widely used p-median model. In 

addition, to provide further insights on computation 

complexity and location problems from intra-urban to 

inter-urban, a detailed sensitivity analysis of four 

algorithms and various facility numbers is conducted on a 

specific case study, namely, Dalarna province, Sweden. 

The road network has hierarchical road levels and an 

asymmetrical structure, where the European highway 

forms the simplest road network with 452 candidate 

nodes, while the most complex road network includes all 

the roads up to the smallest level of the local and private 

streets, with 67, 020 candidate nodes. 

The main result indicates that there is a limit to how 

complex the road network needs to be to find the best 

solutions. When the complexity of the road network 

continues to increase after a certain level the solutions 

barely improve, but even deteriorate. We found that the 

choice of algorithms and facility number p has little to no 

impact on the results, although due to differences in the 

mechanics of the algorithm, there are some variations 

among the algorithms. The most complex level of road 

network (including local streets) is not preferable, 

especially when the number of the facility is less than 20. 

The spatial distributions of the optimal locations show 

that optimal locations found for smaller p remain as part 

of the optimal locations when p increases.  

The specific complexity level that is found efficient 

here might be case-specific, and additional empirical 

analysis on other cases is needed. In the p-median model, 

people are assumed to always choose the closest facility 

and neglect the multiple purpose travel, or the 

heterogeneous preferences on facilities. Therefore, using 

the gravity p-median model [40] and other algorithms for 

MinMax location problems on road network ([41], [42]) 

would provide more insight into the impact of road 

network complexity on optimal facility locations for 

aiding the decision-making in location and transportation 

planning. 
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APPENDIX 

 

Figure A1. Variations from Greedy in excess distances (in percent) 
compared to the best solutions for an increased density level. The x-axis 

shows the density level. The y-axis shows the difference in percentage 
between the best solution and the current solution in accordance to 

( ). 

 

Figure A2. Variations from SA in excess distances (in percent) 

compared to the best solutions for an increased density level. The x-axis 
shows the density level. The y-axis shows the difference in percentage 

between the best solution and the current solution in accordance to 

( ). 

 

Figure A3. Variations from imp-GA in excess distances (in percent) 
compared to the best solutions for an increased density level. The x-axis 
shows the density level. The y-axis shows the difference in percentage 

between the best solution and the current solution in accordance to 

( ). 
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