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Abstract—Though the autonomous driving is becoming a 

key solution to mitigate rear-end collisions, the driving 

assistance such as Advanced Driving Assistance System 

(ADAS) is still required to support drivers to be aware of 

the risk of rear-end collisions. The authors have been 

developing the intent inference system that advises the 

appropriate deceleration timing to mitigate the collision risk 

with the preceding vehicle. The purpose of the system is to 

infer the intent of a vehicle ahead 1.5 s in advance of its 

driver’s most likely action. The proposed system has been 

well evaluated through a driving simulator experiment and 

a car-following simulation in previous studies by the authors. 

However, the car-following simulation itself is not enough to 

identify the safety effect of the assistance system on a vehicle 

platoon of a convoy. In this paper, the safety impact of the 

proposed assistance system on the platooned vehicles was 

assessed using additional driving simulator experiments. 

Numerical analyses showed that the proposed assistance was 

significantly effective for the safety of multiple vehicles in 

the platoon including the assisted car itself.

Index Terms—state estimation, intent inference, Collision 

avoidance, car-following, driver assistance; ADAS, driving 

simulator experiment 

I. INTRODUCTION

Rear-end collisions in longitudinal car-following 

situations occasionally cause severe multiple-collision 

accidents, especially in high-density and high-speed 

traffic conditions. In such situations, the use of an 

Autonomous Collision Avoidance System (ACAS), 

which is one of the active safety measures of Advanced 

Driver Assistance Systems (ADAS), may provide a 

solution. Instead of the direct vehicle control provided by 

an ACAS, an estimation (or prediction) of driver 

intentions, such as lane changing and intersection turning 

intentions, can also provide useful data for accident 
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avoidance solutions [1]-[12]. In addition, numerous 

sophisticated algorithms have been proposed for safer 

traffic not only for assisted vehicles but also for following 

vehicles in multiple-vehicle platoons [13]-[22].  

The authors have previously proposed an advisory 

system that infers a preceding car driver’s deceleration 

intention 1.5 s in advance of its driver’s most likely 

action [23] and reports it to the following car’s driver 

through a windshield display (WSD) [24]. This system 

integrates an unscented Kalman filter (UKF) with a 

conventional car-following scheme that is hereafter 

referred to as the Gazis-Herman-Rothery (GHR) model. 

Previously conducted driving simulator experiments have 

shown that the assistance provided by the system is quite 

effective in reducing collision risks, even in high-

deceleration scenarios [24]. In addition, we confirmed 

through traffic simulator experiments that this safety-

related impact was propagated upstream the platoon [25]. 

In the traffic simulations, however, the car-following 

behavior including the deceleration maneuver was based 

on the constant and assumed parameters. The car-

following simulation itself is not enough to identify the 

safety effect of the assistance system on a vehicle platoon 

of a convoy.  
In this paper, assuming that there are two cars traveling 

behind an ego vehicle, we attempt to assess the safety 

impact of the proposed assistance system on the 

platooned vehicles using additional driving simulator 

experiments. The characteristics of how the safety impact 

is propagated upstream the platoon is investigated with 

and without the ego vehicle advisory. 

II. MODEL DEVELOPMENT

A. Outline of the Assistance System

We begin by considering multiple vehicles forming a

platoon and traveling along a corridor, as shown in Fig. 1. 
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Let vi and di denote the velocity and headway of the i-the 

vehicle, respectively. Assuming that the second vehicle is 

equipped with sensors to measure d2, d3, and v2, the PF 

and UKF calculate the velocity and headway, v1, v2, v3, d2, 

and d3, of all three cars preceding the host vehicle. Here, 

measurement variables y(k) are set to y(k) = [v2, d2, d3]
T
, 

whereas the state variables are x(k) = [v1, v2, v3, d2, d3]
T
. If 

all these variables are identified in real-time, the 

acceleration of the third vehicle, a3, which is expected to 

occur a few seconds later can be predicted in advance by 

the well-known Gazis-Herman-Rothery (GHR) car-

following model. 

 

Figure 1.  Outline of the assistance system 

The GHR model is a conventional stimulus-response 

model that forecasts acceleration T steps ahead by using 

the current velocity and headway of both the preceding 

and pre-preceding cars at time k, as defined in equation 

(1). 
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Here, , m, and n are sensitivity parameters and w 

(0≤ w ≤ 1) is a weight used to adjust the importance of 

the two preceding cars. If w is 1, the model considers the 

preceding car only. T is a vehicle reaction time. 

If the predicted a3 is reported to the following fourth 

(host) vehicle earlier than the third-car brake pedal 

operation is reported, the following driver is alert, and 

thus reacts much faster when the brake lights actually 

appear, thereby decreasing the risk of a rear-end collision. 

As the number of vehicles in the platoon increases, the 

collision risk reduction is reinforced along the entire 

platoon, so traffic becomes safer and more stable. 

B. Modeling 

v1 and v3, which cannot be measured directly by the 

second vehicle, are estimated by the UKF and PF. vi is 

updated at each time step by the following differential 

equation: 
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Here, ai is given by equation (1) and t is a time 

resolution. Headways d2 and d3 are defined by the 

conservation equation: 

        11 1 1i i i id k d k v k v k t          (3) 

One estimation problem is calculating the state 

variables x(k) = [v1, v2, v3, d2, d3]
T
 from the measurements 

y(k) = [v2, d2, d3]
T
. The state and measurement equations 

of a state-space model can be written in vector-matrix 

form as follows: 

 1 1 1, , ,k k k k k k k k           x F x u v y G x u n  (4) 

where uk is a known exogenous input and vk and nk are 

system and measurement noises. The function F is 

defined as equations (2) and (3), whereas G is the 

coefficients matrix. 

C. UKF 

TABLE I.  STATE FILTER BY UKF 
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The UKF is a derivative-free Kalman filter that does 

not require partial derivative calculations of the state and 

measurement equations [26]. The main UKF procedure is 

given in Table I. Let “^” and “~” denote the “filtered 

estimates” and “one-step time update”, respectively. Then, 

the first step is to generate sigma point  in order to 

calculate   the time updates kx , ky   and the error 



covariance Mk
xx

 through sigma vectors k and k. Here, 

N is the number of state variables,  is a scaling 

parameter, and Qk is the system error covariance. Next, 

covariance Mk
yy

 and Mk
xy

 are computed to obtain the 

Kalman gain Kk. Rk is the covariance of the measurement 

error. It should be noted that equation (17) does not 

require the partial derivative calculation that must be 

performed in the conventional extended Kalman filter 

(EKF). This is why the UKF captures the posterior mean 

and covariance accurately by second-order Taylor 

expansions using a minimal set of carefully chosen sigma 

points. Finally, the expected mean ˆ kx and the variance Pk 

after the measurement are updated by (18) and (19). 

III. INTENT INFERENCE OF DECELERATION 

MANEUVERS 

The driver’s deceleration intent could be seen as a 

reflection of a vehicle’s acceleration rate. After state 

variables x(k) are estimated through the UKF feedback 

processes, the prediction of acceleration rates a3(k+T) that 

are expected to occur T seconds later are given by 

equation (1). 

A. Drving Simulator Experiment 

A driving simulator (DS) experiments was carried out 

to collect data on a platoon consisted by the heavy 

vehicle (1st) and the following two passenger cars (2nd 

and 3rd) as shown in Fig. 2. In this set of experiments, six 

participants (P1– P6) were requested to drive the 3rd 

vehicle of the platoon and follow two preceding cars 

travelling on a straight corridor at 0 to 20 m/s with some 

acceleration and deceleration actions. In addition, they 

were instructed to maintain a headway distance that was 

close enough for them to read the four digits of the 

preceding car’s license plate number. A heavy vehicle 

was used as the first car of the platoon, as it was 

important for the participants to recognize both preceding 

vehicles. 

By examining the data collected through the DS 

experiment, the parameters of the GHR model are set as 

=0.8, m=n=1, w=0.95, and T=1.5 s, while the time 

resolution t of the state estimator is set equal to 0.1 s. 

The covariance of errors vk and nk are set to 0.1 and 0.2 to 

0.3, respectively. The scaling parameter  in the UKF is 5.  

B. Testing Results of Velocity and Headway Estimations 

The estimator’s performance was first examined for 

the v1 and v3 estimations by the UKF, which are the most 

important factors for the intent inference. Fig. 3 are the 

estimates of velocities for P1. It seems that the system is 

capable of tracking speed variations although they were 

not directly measured by the assistance system. 

The other state variables such as v2, d2, and d3 are 

directly measured, but contain measurement noises that 

should be eliminated through the estimator feedback 

processes. As depicted in Fig. 4, the UKF performed well 

for tracking the true measurements and filtering the 

noises.  

For the six participants, the performance is 

summarized as root mean square errors (RMSEs) (Figure 

5). The RMSE demonstrates that the UKF guarantees a 

satisfactory level of accuracy for all state variables. 
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Figure 2.  Three-vehicle convoy for a driving simulation experiment 
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Figure 3.  Velocity estimates for P1 
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Figure 4.  Estimates of state variables for P1 
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Figure 5.  Errors of state estimations 
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C. Accuracy of Deceleration Intent  

Fig. 6 illustrates the predicted deceleration of the 3rd 

vehicle for P1, P3 and P5 in which the prediction errors 

were 0.56, 0.73 and 0.93 m/s
2
. The prediction did not 

completely match the actual measurement. However, the 

proposed system was capable of successfully inferring the 

driver’s deceleration intention that is expected to occur 

1.5 s later for both ordinary and emergency deceleration 

scenarios.  The average error was less than 1 m/s
2
. 
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Figure 6.  Accuracy of deceleration intent prediction 

IV. SAFETY IMPACT OF INTENT INFERENCE SYSTEM 

A. Interface 

Since driver intentions contain high levels of behavior 

uncertainty, it is almost impossible to predict deceleration 

rates that precisely match the driver behaviors. Even if 

the inferred intent is not particularly accurate, it may 

provide valuable information for the following car driver 

and thus help mitigate collision risk. The key issue is not 

to attain absolutely accurate inference but to design an 

appropriate human machine interface (HMI) that reports 

the forecasted deceleration intent to the following car 

driver in a way that will assist in mitigating rear-end 

collisions, even though it will always contain some levels 

of uncertainty. 

When reporting such unreliable information, they 

should be given to drivers in their peripheral vision in 

order to reduce their visual load. We therefore proposed a 

wind-shield-display (WSD) like interface that the colored 

bars appear from a pair of front pillars of a vehicle when 

necessary as shown in Fig. 7. The color changes 

depending on the amount of inferred deceleration from 

yellow, amber and red. Four regions are prepared such as 

“no intent”, light, high and emergency deceleration intent. 

The boundaries between the regions are 0.05 G, 015 G 

and 0.25 G, respectively.  

 

Figure 7.  Interface design 

The colored bars appear 1.5 s earlier than the actual 

deceleration of the preceding vehicle. Thus, the following 

driver is able to recognize in advance not only the timing 

of the deceleration onset but also the intensity of the 

deceleration. He or she reacts much faster when the brake 

lights actually appear, thereby decreasing the risk of a 

rear-end collision. As the number of vehicles in the 

platoon increases, the collision risk reduction is 

reinforced along the entire platoon, so traffic becomes 

safer and more stable. 

B. Driving Simulator Experiment 

A series of driving simulator (DS) experiments were 

carried out to evaluate the proposed driver assistance 

system. Seven participants (P7 to P13) were requested to 

drive the fourth vehicle of the platoon and another fifteen 

subjects (P14 to P28) were to maneuver the fifth and 

sixth cars when travelling on a 5-km straight corridor at 0 

to 20 m/s with some acceleration and deceleration actions. 

Fig. 8 depicts the set-up of the DS experiment. The first 

three cars make a convoy and only the fourth vehicle is 

equipped with the WSD to assist P7 to P13.  

 

Figure 8.  Set-up of a driving simulator experiment for system evaluation 
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The colored bar appears at least 1.5 seconds before the 

actual deceleration of the 3rd vehicle. The 5th and 6th 

vehicles, which are not assisted by the system are 

manual-driving cars. The risk of collision of the 4th
 
to 6th 

cars were evaluated in terms of maximum deceleration 

(MDR) and minimum time-to-collision (TTC) with and 

without the assistance.  

All participants were instructed to: 

 Maintain a headway distance that was close 
enough for them to read the four digits of the 
preceding car’s license plate number, 

 Drive at an appropriate speed although there is no 
speed limit prepared, 

 Make appropriate collision avoidance actions 
when necessary, 

 Attempt to recognize the color bars in peripheral 
vision when they appear, i.e. concentrate on the 
preceding car(s) ahead to avoid collisions,  

 Be noticed that the information given through the 
system was not always correct and there may be 
possibilities of malfunction and missed alarm.  

In addition, they gave their informed consent before 

taking part in the experiment that was approved by the 

ethics committee of Nippon Institute of Technology. 

C. Test Conditions 

Enough numbers of pre-trial testing were carried out 

for the participants to adapt the driving by the DS with 

and without the assistance system given by the WSD. 

After that, two conditions were repeated twice; control 

condition (Condition I) and experimental condition with 

system (Condition II). 

D. Evaluation 

1) 4th vehicle 

As an example of the evaluation, the deceleration of P7 

is shown in Fig. 9. Without the assistance, the MDR came 

to around 0.8 G at the emergency deceleration scenario. 

The proposed assistance, however, is able to reduce it 

until around 0.2 G. The mean and SD of the MDR and 

minimum TTC in total six participants (P7 to P13 except 

P11) are given in Figure 12. It is clear that the assistance 

significantly reduced the MSD (t(22) = 4.083 (p<0.01)) 

and increased the minimum TTC (t(22) = 3.520 (p<0.05)). 

This is due to the noteworthy effect of the system which 

induces the driver to be ready for the deceleration. 

If the inferred deceleration is reported to the following 

vehicle earlier than the preceding-car brake pedal 

operation is reported, the following driver thus reacts 

much faster when a brake light actually appears, and the 

risk of a rear-end collision can be decreased. 

2) 5th and 6th vehicles 

Fig. 10 and Fig. 11 are the comparisons of acceleration 

with and without the assistance for 4
th

 vehicle. It was 

found that the effect of the assistance was gradually 

deteriorated as the shockwave is propagated through the 

platoon of vehicles. The performance of the manual-

driving 5th and 6th vehicles was summarized as shown in 

Fig. 13 and Fig. 14. The MDR and minimum TTC were 

decreased and increased even though they are not 

equipped with the assistance system. In other words, even 

without equipped with the assistance system, the effect of 

risk mitigation is propagated from the assisted car to the 

following vehicles along the platoon. Not only the 

assisted vehicle but also the following cars are able to 

receive the benefit and thus the platoon becomes safer 

and more stable. However, the significance of the effect 

was gradually decreased as it is propagated upstream the 

platoon. The statistical significance was large 

(t(10)=3.759 (p<0.01) for MDR, t(10)= –4.455 (p<0.01) 

for TTC) if the 4th vehicle is firmly assisted. 
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Figure 9.  The acceleration with and without system (4th vehicle) 
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Figure 10.  The acceleration with and without system (5th vehicle) 
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Figure 11.  The acceleration with and without system (6th vehicle) 
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Figure 12.  MDR and minimum TTC with and without system (4th 

Vehicle) 
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Figure 13.  MDR and minimum TTC with and without system (5th 

Vehicle) 
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Figure 14.  MDR and minimum TTC with and without system (6th 

Vehicle) 

V. CONCLUSION 

In this work, we developed the system that infers the 

deceleration behavior and reports it to the following 

vehicle at least 1.5 s earlier than the preceding-car brake 

pedal operation. We evaluated the proposed system to 

determine whether it is applicable not only in ordinary 

deceleration cases but also in scenarios where an 

emergency deceleration is required. Empirical results 

show that the system performed well in prediction of 

driver’s deceleration intent.   

We then designed a WSD like interface that reports the 

forecasted deceleration intent to the following car driver. 

A series of DS experiments showed that the system 

induced drivers to be ready for forthcoming braking of 

preceding car and reduced the effort of deceleration to 

avoid a collision. It was found that if the inferred 

deceleration is reported to the following vehicle earlier 

than the preceding-car brake pedal operation is reported, 

the following driver thus reacts much faster when a brake 

light actually appears, and the risk of a rear-end collision 

is decreased. In addition, the effect of risk mitigation is 

propagated from the assisted car to the following two 

vehicles along the platoon. Not only the assisted vehicle 

but also the following car are able to receive the benefit 

and thus the platoon becomes safer and more stable. 

However, it is also true that the significance of the effect 

was gradually decreased as it is propagated upstream the 

platoon. 

In further research effort, the interface should be 

improved to a more sophisticated one and the proposed 

assistance system should be tested in various environment 

including high-speed and dense traffic on expressways or 

arterial roads. 
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