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Abstract—The Connected Vehicle (CV) technology has the 

potential to transform driver behavior and will become a 

promising real-time data source that provides information 

required to accurately estimate traffic conditions. The 

information generated by CVs -including speed, position, 

and acceleration- can be used to analyze, evaluate, and 

improve the efficiency of the existing transportation 

infrastructure. In this study, the hierarchical clustering 

approach based on Wasserstein distances is used to estimate 

travel times using simulated CV data in an urban setting. 

The proposed methodology combines segments within a 

roadway section that have similar speed profiles into 

clusters and uses these grouped sections to compute the 

travel time on an individual section. The Basic Safety 

Messages (BSM) data are simulated from a calibrated 

traffic model using the Trajectory Conversion Tool (TCA).  

The generated messages with 5 and 10% market 

penetration levels are used as input for the clustering based 

travel time estimation algorithm. The results show that it is 

possible to accurately estimate travel time using CV data 

even with lower market penetration levels.  

 

Index Terms—connected vehicles, hierarchical clustering, 

travel time estimation, performance measures, CV 

applications 

 

I. INTRODUCTION 

Performance measures are defined as indicators that 

provide system efficiency. In this study, travel time is 

chosen as the performance measure. For instance, travel 

time variability is an emerging display of performance 

progressively used by decision makers in the context of 

transportation. Furthermore, it is a metric that can be 

measured effectively using many technologies [1], [2]. 

Travel time information between specific points is critical 

information for all transportation agencies and travelers 

[3]. Accurate estimation of travel times reveals the system 

performance. Travel time is conventionally detected with 
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fixed infrastructure for ITS operations. With the 

technological developments, new ways of traffic sensing, 

computing, and communication methods have become 

available. Processing a large amount of real-time traffic 

data has become convenient for traffic operations and 

traveler information systems. Web-based real-time traffic 

applications such as Bing Maps, INRIX, Google Maps, 

and Waze started to release information about the current 

state of traffic. However, the information provided by 

CVs is different from web-based real-time traffic 

applications. The first dissimilarity is that the current real-

time traffic web services collect data through a GPS 

device. Collected data are filtered to remove outliers and 

are used to provide traffic information such as estimated 

vehicle speed, and travel time. On the other hand, CVs 

will have direct access to the present state of the vehicle 

which provides more accurate information.  

The CV platform has the potential to transform the way 

Americans travel and will supply promising real-time data 

source that provides information required to estimate 

traffic conditions on a network. Such information -

including speed, position, and acceleration- can be used to 

understand, evaluate, and improve the effectiveness of the 

existing transportation infrastructure. The messaging 

standard was mainly focused on static element messaging 

through the Dedicated Short Range Communication 

(DSRC) technology in the United States Department of 

Transportation (USDOT) Vehicle-Infrastructure 

Integration (VII) Program [4]. The US messaging 

protocols involve generation of probe data message (PDM) 

and basic safety message (BSM). PDM includes periodic 

snapshots of vehicle position and speed stored in a buffer 

and transmitted when within transmission range of a 

roadside equipment (RSE) [5], [6]. BSM consists of 

vehicle size, position, speed, acceleration, brake system 

status, etc. at every 0.1 s and either periodically or in the 

case of special events such as engagement of antilock 

brakes, starting windshield wipers, changes in temperature, 

etc. [5]. Most mobility applications in the literature utilize 
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BSM protocol to calculate performance measures such as 

travel time for CV environments. The main purpose of 

these applications is to utilize frequently collected and 

transmitted data gathered from connected elements of the 

system to improve travel efficiency in terms of time and 

comfort while reducing negative environmental impacts 

and safety risks. However, the ability to use the CV data 

relies on the market penetration rate of CVs, the success 

of the appropriate filtering tools, and the essential traffic 

conditions. Therefore, it is critical to develop, analyze and 

implement a comprehensive methodology that considers 

both the traffic conditions on the accuracy of the 

estimation of critical transportation measures as well as 

the effects of market penetration rates of the CV 

technology. 

In this paper, a hierarchical clustering based travel time 

estimation model using Wasserstein distances is proposed 

to reduce the error in the assessment of travel time in an 

urban environment. The proposed algorithm divides 

selected roadway into cells. Then, the cells with similar 

speed profiles are clustered to form sections. These 

sections are then used in the estimation of route travel 

time along with removing outliers. The rest of this paper is 

structured as follows. The next section provides a review 

of the studies utilizing various clustering techniques and 

their applications in CV environments. The methodology 

section explains the Wasserstein dissimilarity measure and 

the proposed clustering approach. Section IV delivers 

information about the experimental setting, traffic 

simulation model, and the tools used for this study. 

Section V provides results by comparing travel time 

estimation results using the proposed clustering 

methodology to the probe data vehicle approach. The last 

section in this study concludes the paper and offers 

suggestions for future research. 

II. BACKGROUND AND MOTIVATION 

Clustering is a process of forming virtual groups using 

nodes that are in close vicinity based on the defined 

similarity rules. Many different clustering algorithms are 

used in CV applications in the recent literature. A detailed 

overview of different clustering algorithms and their uses 

in the vehicular ad-hoc network (VANET) can be found in 

[7]. For instance, Maglaras and Katsaros [8] proposed a 

distributed clustering algorithm to provide the large-scale 

VANETs to simplify routing operations. Their approach 

created lesser and more stable clusters on different settings 

and transmission ranges. Clustering based methodologies 

have also been used in travel time traffic forecasting [9]-

[14] and locating sensors for travel time information [15]-

[18]. Bartin, et al. [15] showed that vehicle trajectory data 

could be used to obtain statistically significant travel time 

estimations at the study location. The discretization of 

space on the interested routes helped to find the segments 

where travel time estimation errors were reduced for the 

given estimation function. These homogeneous segments 

were found and grouped by using a clustering approach. 

The placement of point sensors is also studied by Kianfar 

and Edara [19]. They studied three different clustering 

techniques including hierarchical, k-means, and Silhouette 

Measure. Similar to [15], they divided freeway into cells 

of equal length and clustered cells that have similar speed 

profiles. The results showed that the hierarchical and k-

means clustering algorithms with prior knowledge about 

the cells produced the best clusters. Assuming each 

vehicle can become a sensor in a CV environment, placing 

hypothetical sensors to roadways and finding the optimal 

estimation method of performance measures become very 

critical. On board sensors integrated into CVs become the 

main equipment to sample the traffic condition.  

Although the sensor location problem has been 

investigated by many researchers using clustering 

techniques, most of them compared average or aggregated 

measures between nodes to form clusters [15], [16], [19]. 

However, a hierarchical clustering of histogram data using 

Wasserstein distances is used in this paper. There are two 

main clustering techniques that are heavily used in the 

literature. The first approach considers the prototype of a 

cluster as an entity which has the same properties of the 

other elements in the cluster. For instance, if the cluster’s 

barycenter is close to the entity’s barycenter, that entity is 

considered as an element of that cluster. In the second 

approach, the prototype of a cluster has to explain the 

variation as well as the characteristics of the other 

clustered elements [20]. Furthermore, the selection of the 

distance measure plays a crucial role when performing 

clustering. Irpino, et al. [20] introduced a new metric for 

the distance measure which extends the Wasserstein 

metric, and can be easily computed. Histograms are 

mostly used to represent not only the range of variability 

but even the inner variability of complex data [21]. The 

modal data are needed when it is necessary to analyze 

information about a group of entities [22]. Therefore, 

comparing two adjacent cells by looking at their speed 

distributions would support building more homogeneous 

sections, which in turn leads to better travel time 

estimations. Most studies in the literature have used a long 

freeway segment and stable conditions while comparing 

different travel time estimation methods. However, this 

approach is not sufficient to capture the inner variation of 

travel times within the segments, and it may actually 

overestimate the travel time in some sections and 

underestimate in others. Furthermore, estimation 

algorithms are tested only for stable conditions in which 

most GPS-equipped probe vehicles based estimation 

methods work fairly well. 

III. RESEARCH METHODOLOGY 

The proposed methodology combines segments within 

a roadway section that have similar speed profiles into 

clusters. To accomplish this, the section is first discretized 

into N number of equal length cells as it seen in Fig. 1. 

 
Figure 1. Discretization of the roadway segment using hierarchical 

clustering method 
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The selection of l  depends on the vehicle 

transmission capacity of connected vehicles. According to 

Johri, et al. [23], given a specific value of the number of 

lanes (denoted by N) and inter-vehicle gap (denoted by D) 

on a road segment, the overall transmission capacity is as 

follows: 

2
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                                (1) 

where R is the transmission range (default 300 meters), I 
is the ratio of interference range (default 2 REF), C is the 
wireless channel capacity (default 27 Mbps which is the 
maximum rate of the current DSRC), U is the overall 
capacity utilization ratio (default 0.9), L is the packet 
length (default 400 bytes). Assuming an inter-vehicle gap 
of 20 ft., number lanes as 3, and the perfect wireless 
communication conditions, it was found that 553 ft. is the 
minimum segment length in which vehicles can transmit 
messages without exceeding the capacity under dense 
traffic conditions. Therefore, the cell length is selected to 
be at least 660 ft. The relationship between the number of 
cells and the roadway segment length is given by the 
following: 

/ ;      660N L l l ft                     (2) 

Cells with similar speed patterns can be combined to 

characterize a segment with homogeneous speed profile to 

improve the accuracy of critical transportation measure 

calculations. According to Irpino [22] symbolic data is a 

multi-valued descriptor with frequency, probability, or 

weight associated with each of its specific values. Since 

speed profiles of each cell constructed using the speeds 

measured at each cell during the data collection period, it 

is possible to explain them using modality. For example, 

given a set of units i , the modal variable Y is a 

mapping: 

 ( ),  for i iY U i i                         (3) 

where i  is an associated nonnegative measure on the 

domain Y of possible observation values. ( )U i Y  is the 

support of i . In other words, speed histogram data is a 

proxy for representing the underlying empirical 

distribution of a continuous variable Y which contains 

individual speed measurements. Y is divided into a set of 

consecutive, non-overlapping classes (bins) ( )U i

associated with i weights. 

In mathematics, the Wasserstein (or Vaserstein) metric 

is a distance function used for the evaluation of the 

convergence of probability distributions on a given metric 

space X. It is also known as “earth mover’s distance” in 

the literature [24]. Assuming each distribution as a unit 

amount of “dirt” laid on space X, the Wasserstein (or 

Kantorovich) distance provides the cost of turning one 

pile into the other. According to [20], considering a 

Euclidean norm, the equation used to calculate the 

Wasserstein distance between distribution functions of Y(i) 

and Y(j) is: 

1

1 1 2

2

0

( , ) ( ( ) ( ))i j i jW Y Y F t F t dt                       (4) 

where 
iF  and 

jF  are the cumulative distribution functions 

and the 1

iF   and 1

jF    are the quantile functions. 

Assuming speed distributions in each cell is represented 

by histograms, E would be the whole set that contains 

each cell’s speed distribution data described by interval 

variables. The prototype of the cluster  ( 1,..., )jC j J
 
is 

represented by a vector 
1( ,..., )JG G G where 

jG is a 

histogram. J is the number of clusters, and it varies from 2 

to N. In other words, each cluster and cluster prototypes 

are also represented as histogram data. The clustering 

algorithm tries to find a partition 
1( ,..., )JP C C  of E in J 

clusters. The partitioning criterion that is locally 

minimized for the clustering algorithm is defined as: 

2
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                   (5) 

where 2

2 ( , )i kW Y g is a Wasserstein distance measure 

between objects and 
i jY C the class prototype 

jG of jC .  

The clustering algorithm groups similar cells together. 

The number of groups can be varied from 2 to N. After 
clustering; only successive cells are grouped together to 

form detection sections. Such sections are then used in 

travel time calculation. This step makes sure that cells that 

are only physically next to each other are clustered. To 

investigate the accuracy of the proposed approach, two 

criteria namely, mean absolute percentage error (MAPE) 

and root mean square error (RMSE) are calculated. 
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where GTTT and ETT are ground truth travel time and 

the estimated travel time respectively, and n is the 

number of 5-minute periods. 

IV. SIMULATION MODEL 

To validate the hierarchical clustering algorithm, the 

microscopic traffic simulation software PARAMICS is 

used to model urban traffic. The downtown Brooklyn area 

of New York is selected for the case study. The final 

traffic simulation model consists of 36 intersections, 22 

traffic signals, 19 traffic zones, and 16.35 miles of 

roadway. The actual properties of roadway links such as 

the signal timing, length, lane width, number of lanes, and 
speed limit are also encoded in the network file. The 

traffic simulation model is calibrated for the AM peak 

period (7-10AM) using the turning movement counts 

collected at each intersection and one way travel time 

from Tillary Street to Grand Army Plaza (Southbound). 

Fig. 2 below shows the network location and the 
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generated traffic simulation model in PARAMICS. In 

addition, a traffic incident which occurred at 8:15 AM is 

simulated for 30 minutes to reflect the non-recurrent 

traffic conditions. The simulated incident is a broken 

down vehicle and it blocks the right most lane. Trajectory 

data are collected every 0.1 seconds in the simulation for 

an hour between 8-9 AM. The 7632 ft. section between 

Tillary Street and Grand Army Plaza is selected for further 

investigation. 

 

Figure 2. Study location 

 
Figure 3. TCA tool - off-line mode of operation [25] 

Once the simulation network is calibrated, CV 

messages can be generated using software called the 

Trajectory Conversion Algorithm (TCA) built by NYU 

UrbanMITS Transportation group and Noblis [25]. This 

software is intended to test diverse scenarios for 

generating, transferring, and storing CV information. The 

developed open-source the TCA tool is one of the vital 

features of the BSM Data Emulator, and it can work in an 

on-line or off-line mode. The on-line mode generates CV 

messages while the traffic simulation is running. On the 

other hand, the offline mode which will use simulated 

vehicle trajectories and convert them to CV messages. Fig. 

3 graphically illustrates the approach for trajectory 

conversion to CV messages. Using the off-line mode of 

the TCA tool, trajectory data collected after running the 

simulation are converted into BSM CV messages with 5% 

and 10% market penetration levels to check the accuracy 

of travel time estimation accordingly. Traffic simulation 

model calibration remains a difficult and time-consuming 

task. Lack of data related to the CV applications and the 

parameters that must be calibrated for each model making 

this task particularly complex. Therefore, the latency and 

drop rate of messages are assumed to be “0” for simplicity.  

V. EXPERIMENTAL RESULTS 

This section presents results comparing the proposed 

approach with the travel time estimation method using 

probe vehicle BSM messages. Given the stochastic nature 

of microscopic simulations, several repetitions of the same 

scenario with different random seeds should be 

undertaken. Multiple runs are always desirable with 

calibrated and validated stochastic microscopic simulation 

models. Therefore, CV messages are generated using 

trajectory data from 5 different runs with different seeds. 

It has been detected that the average error rate in 

estimating travel times does not change more than 5% 

after the 5
th
 run. Fig. 4 shows the cluster results after 

analyzing the first 5 minutes of speed data received by 

vehicles. 

 

Figure 4. Clustering Results for the first 5-minute Period 

Fig. 5 shows the location of the clusters for the first 5-

minute period at 10% market penetration as an example. 

The number of clusters changes in the each 5-min period 

and it is decided by the height calculated by the 

dissimilarity measure. If the joining height of two clusters 

is twice more than the existing merged height, the tree is 

cut by that static value which defines the number of 

clusters. The red line in Fig. 4 shows the tree cut. For 

example, 5 clusters are formed for the first 5-minute 

period at 10% market penetration level.  

 

Figure 5. Cluster Locations 

 
Figure 6. Travel time comparisons at 5% market penetration level 

Fig. 6 below illustrates the estimation results for 5% 

market penetration level. All the results using BSM that 
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are reported in this section are the average metrics of the 

five simulation runs conducted. The green line is the 

estimated travel time with the hierarchical clustering 

model, the red line is the estimated travel time with GPS 

probe data sampled every 0.1 seconds, and the blue one is 

the ground truth travel time data. It has been detected that 

when the incident took place, the accuracy of the 

estimated travel time with GPS probe data reduces 

dramatically. After the incident, the accuracy of the 

estimated travel time improves. 

Similar behavior has also been observed for the 10% 

market penetration level as it can be seen from Fig. 7. 

Although the GPS probe data poorly estimated the travel 

time during the incident, the overall accuracy of the 

estimation is improved with additional probe vehicles. 

The hierarchical clustering method again performed better 

than the probe data, and its accuracy is also improved by 

17% with the higher market penetration level. 

 
Figure 7. Travel time comparisons at 10% market penetration level 

The estimation results for each 5 minute period at both 

market penetration levels are summarized in Table I. As it 

can be seen from the table, the clustering method 

outperformed the probe vehicle approach at both market 

penetration levels. Although the RMSE for the clustering 

method for 10% market penetration level is 133.5 which 

higher than the RMSE values for 5% penetration level, it 

can better capture the overall distribution of the travel 

time before, during and after the incident.  

TABLE I. COMPARISON OF THE RESULTS OF THE HIERARCHICAL 

CLUSTERING WITH PROBE VEHICLE APPROACH 

Approach RMSE MAPE 

BSM Probes (5%) 133.2 20.7% 

Hierarchical 
Clustering (5%) 

85.07 17.4% 

BSM Probes (10%) 108.1 17.4% 

Hierarchical 

Clustering (10%) 

133.5 12.6% 

VI. CONCLUSION AND DISCUSSION 

In this study, the hierarchical clustering method based 

on Wasserstein distances is used to estimate travel time on 

the given route in an urban setting. Simulated data from a 

calibrated traffic model are used to generate BSM 

messages. These messages generated at 5% and 10% 

market penetration levels are used as an input for the 

travel time estimation algorithm. The results showed that 

it is possible to accurately estimate travel time using CV 

data even with lower market penetration levels.  

The proposed methodology outperformed the 

traditional GPS-equipped probe vehicle-based travel time 

estimation methodology. At 5% market penetration level, 

the MAPE for the clustering and probe vehicle-based 

travel time estimation methods are 17.4% and 20.7% 

respectively. When the market penetration level is 

increased to 10%, the MAPE for the clustering and probe 

vehicle-based travel time estimation method become 12.6% 

and 17.4% respectively. The simulated incident is a 

vehicle breakdown blocking one lane. Thus, all lanes may 

not have similar levels of queuing and speed reduction. If 

the sampled vehicle is stuck behind the incident, it may 

lead to poor travel time estimations. Therefore travel time 

estimation could be higher than ground truth as the 

“average” sampled vehicle data does not necessarily 

reflect conditions for each vehicle. The essential value of 

the approach is to create homogeneous sections having the 

statistically significant amount of vehicles to sample data 

for more reliable estimations. Furthermore, the approach 

could be applied in real-time since the data processing, 

and clustering takes less than one minute to execute. 

However, appropriate and meaningful criteria derived 

from the historical data have to be carefully chosen before 

the algorithm is applied to a new section. The scenarios 

with more market penetration levels, different roadway 

types, and messaging protocols will be tested in a future 

study. 
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