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Abstract—One of the most common challenges for 

autonomous driving at urban intersections is the proper 

analysis and interpretation of traffic lights and traffic signs 

in order to set the proper behavior of the ego vehicle. Among 

other problems, the inaccuracy of the perceived inputs and 

their time fluctuations increase the difficulty of 

understanding the current situation. Thus, we propose a new 

concept to interpret the pass permission at urban 

intersections in a simple manner. The main idea is to 

calculate the probability of every perceived input to generate 

a probability mass function in which every discrete state 

corresponds to one possible pass permission. In this sense, 

every resulting state indicates a certain behavior of the ego 

vehicle with respect to the intersection. This approach helps 

the system to set the proper maneuver automatically 

according to the European traffic rules.  

 
Index Terms—automated driving, scenario interpretation 

 

I. INTRODUCTION 

The first matter of a human driver approaching an 

intersection is to determine how the traffic flow is 

controlled. 

It is not only about estimating if one is allowed to pass 

the intersection or not. In fact, it is crucial to understand 

how one should pass the intersection and under which 

conditions. With this information, one is able to plan and 

execute the further maneuver according to the traffic rules. 

Obviously, this is a very simple task for a human, but the 

same problem represents a challenge for a self-driving car. 

In this context, such a system should first perceive the 

surrounding of the ego vehicle, then interpret it and finally 

set the appropriate driving strategy. In particular the 

system should recognize those inputs that control the 

traffic flow at the intersection (i.e. traffic lights, traffic 

signs and road signs). In this context, only normal 

situations should be considered, but not those such as 

emergency vehicles, indications of a police officer, 

temporal constructions sites, etc. 

According to the Vienna Convention on Road Signs and 

Signals of 8 November 1968 [1], the traffic flow at 

intersections is normally controlled in three different ways: 
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with traffic lights, with traffic signs or with the right 

before left rule.  

In [2] the authors introduce a new approach to optimize 

the control of traffic lights at intersections. They consider 

a connected intersection system where all vehicles share 

information. To improve the traffic flow, the proposed 

controller makes real time decisions for the time duration 

of the traffic lights. There optimization is based on game 

theory algorithmic. Similarly, the same problem is solved 

based on a process synchronization approach in [3]. In this 

regards, the presented approaches enable to reduce the 

dead-lock and waiting time at intersections regulated by 

traffic lights. 

Nevertheless, the big bottleneck of the interpretation is 

to handle uncertainty and fluctuations of the perceived 

inputs over time. Nevertheless, many authors take for 

granted that Vehicle-to-X communication is available to 

solve this problem. For example, in [4] the authors present 

two methods for priority conflict resolution. The first 

method uses some vectors that describe the turning 

possibilities of all vehicles and their corresponding 

priority signs. Then, an auxiliary table containing all 

possible vectors is associated with Boolean values to 

indicate if the ego vehicle has to move or stop. The second 

proposed method aims to interpret different priority levels 

(using an auxiliary truth table to detect potential conflicts 

with other vehicles). These two proposed methods depend 

on a predefined topology (in this case a two road 

intersection) and a vehicle-to-vehicle communication 

system is required. 

In [5], a hierarchical finite state machine is used to plan 

the proper behavior of the ego vehicle. The movement of 

ego vehicle is divided in three different types: normal 

driving in streets, in intersections or in unstructured 

environments. To handle driving in intersections, three 

simple states are used: stop if the ego vehicle is in a 

yield-road, driveInside if it crosses the intersection on a 

priority road and priorityStop if stop and wait is needed. A 

different approach was introduced in [6]. The authors use 

description logic to describe an ontology that represents 

the road networks, objects, their relations, and traffic rules. 

The goal is to reason the relations hasRightOfWay and 

hasToYield, which is done executing augmentation rules 

according to the current situation. A simple and a complex 
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intersection are used as example. Its reasoning takes 

approximately 1.6 and 3 seconds respectively. 

Conversely, the authors in [7] use multi criteria based 

decision making to set the most appropriate maneuver. 

This decision making unit, which is modeled as a Petri net 

[8] is divided in two stages. The first stage aims to set the 

feasible maneuvers considering safety and traffic rules. 

Then, the second stage considers the calculated set of 

maneuver and the input of the route planner. In this respect, 

the traffic rules knowledge and its application is embedded 

in the execution of a Petri net. In fact, the core of the 

problem is to interpret the different recognized traffic 

lights and traffic signs in a proper manner, so that the 

system can plan and execute the desired maneuver 

considering the traffic rules. 

This paper is organized in six sections. After 

introducing the problem, the main structure is explained in 

the second section in order to give the reader a quick 

overview of the main idea of our approach. In the third 

section the concept based on a probability mass function to 

model the pass permission at an intersection is explained 

in detail. This represents the core of our approach.  

Subsequently, the fourth section explains how the 

fluctuations are interpreted over time. Then, some 

experimental results are presented before the conclusion of 

the paper. 

II. MAIN ARCHITECTURE 

The architecture of a generic self-driving system can be 

structured in four main modules: (1) perception, (2) 

scenario interpretation, (3) planning and (4) control. The 

low level processing of sensors and a priori data (e.g. 

image processing, object recognition and tracking, 

localization and mapping, etc.) is represented by the 

perception module. The scenario interpretation involves 

understanding the processed and described data. Then, the 

planning module makes the proper decisions and delivers 

them to the control module, which finally executes it, 

providing the adequate signals in terms of steering and 

acceleration. This simplified structure with the elements 

required in our approach is illustrated in Fig. 9. 

The perception module receives the detected traffic 

signs and traffic lights (e.g. from the camera or 

vehicle-2-X communication), the position of the ego 

vehicle (from the GPS or other localization approaches) 

and an a priori map that describes the road network. The 

assignment of the ego vehicle into a lane is done using its 

position and the a priori map as input. Once it is estimated 

on which lane the ego vehicle is, this information is used to 

achieve the assignment of the detected traffic lights (and 

traffic signs) into lanes. In other words, the association 

between every traffic light (and traffic sign) to every lane 

is estimated. 

The scenario interpretation module receives the traffic 

lights and traffic signs associated to lanes. Then, this 

information is used to understand how the behavior of the 

ego vehicle at the intersection (namely the pass permission 

from an ego perspective) should be. Consequently, this 

state suggests the behavior of the ego vehicle, so that the 

proper maneuver can be provided to the planning module. 

Finally, the controller converts its input (a suggested 

trajectory) into acceleration and steering values. 

III. MODELING THE PASS PERMISSION AS A PROBABILITY 

MASS FUNCTION 

Considering the represented architecture, the 

inaccuracy of the inputs can be caused by different reasons. 

For example in case that the localization is not accurate 

enough because of poor GPS signal, the traffic lights are 

erroneously detected or there are discrepancies between 

the a priori map and the real road network. 

It is a fact that the probability that a particular traffic 

light is valid for the ego vehicle depends on the accuracy 

of previous modules. Therefore, it becomes a requirement 

to handle the uncertainty of the inputs provided by the 

perception module.  

In this respect, the scenario interpretation module 

should deal with the probability of its input. Here, the term 

probability is used as a bayesian probability; that is to say, 

it does not indicate how frequently an event occurs, but 

how certain a given hypothesis is, so that a probability is 

assigned to it. As a simple example, if the location is very 

inaccurate (and hence it is improbable that the ego vehicle 

is assigned correctly to its lane), the hypothesis of 

achieving a perfect association of several detected traffic 

lights into lanes is very unlikely. The basic idea is to 

calculate the Bayesian probability P(TLk) of every traffic 

light state k considering the probability of previous 

modules as evidences. In the same way, P(TSl) is 

estimated for every traffic sign l. This is illustrated in Fig. 

10. 

P(Pos) and P(AM) correspond to the probability that the 

localization of the ego vehicle and the information of the a 

priori map is correct, respectively. The probability of the 

proper recognition of a detected traffic light phase i is 

denoted as P(TLRi). Similarly, P(TSRj) indicates the 

probability that a detected traffic sign j has been correctly 

recognized. 

P(AM) and P(Pos) influence directly on how certain the 

assignment of the ego vehicle to a lane f is (i.e. P(LAf)). 

The probability of the assignment of a traffic light phase i 

into a lane f is denoted as P(TLAif). Because there is an 

independent probability for every association of every 

traffic light (i = {1, ...,I}) to every lane (f = {1, ..., F}), the 

resulting assignment probabilities can be expressed as a 

(IxF)-matrix in which every element represents an 

independent probability: 
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Note that this matrix (1) should not be misunderstood 

with a stochastic matrix. Every element of the matrix 

represents an independent hypothesis. 
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Figure 1. Example with 5 detected traffic lights (I = 5) and 3 lanes (F = 3). 

The Fig. 1 shows an example with 5 detected traffic 

lights and 3 lanes. In this example, the first 4 traffic lights 

(i = {1, 2, 3, 4}) are valid for the 3 lanes (f={1,2,3}) and the 

fifth traffic light is valid just for the third lane. Therefore, 

an ideal assignment should provide the following 

probabilities: 
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In the same manner, the probability of the assignment of 

traffic signs into lanes P(TSAjf) can be expressed as the 

following matrix: 
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Figure 2. Different possible states k of the traffic light probability mass 
function. 

The variables i and j represent the index of the detected 

traffic lights and signs respectively. In contrast, the 

variable k represents the index of every possible state of a 

traffic light and l indicates every type of traffic sign. In the 

case of traffic lights, the different colors (red, amber, 

green), forms (normal, left arrow, right arrow...) result in 

multiple combinations. We group together the 

combinations that indicate the same pass permission into 9 

different states (k = {1,2, ..., 9}), so that the term state 

corresponds to a group (i.e. every group indicates a 

different behavior for the ego vehicle). This is clearly 

shown in Fig. 2. 

On the other hand, P(TLk) corresponds with the 

probability that every possible state k is valid for the ego 

vehicle. 

Using the assignments of the ego vehicle to lanes and 

traffic lights to lanes, it is calculated the conditional 

probability that every traffic light state k is valid for the 

ego vehicle (P(TLk)): 
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Similarly, the probability that every vertical traffic sign 

state l is valid for the ego vehicle results: 
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Consequently, the set of states k = {1, 2, ..., 9} is 

expressed as a discrete random variable of a probability 

distribution. This resulting mass function indicates the 

probability that every state of the traffic light k is valid for 

the ego vehicle. Since every state is interpreted as a 

dependent hypothesis, the sum of the probabilities of every 

state is 1: 

 
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Likewise, a probability mass function is calculated for 

the different traffic signs (): 

 
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l
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1
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Since the main idea is to estimate the current pass 

permission state based on the traffic lights and signs, both 

functions are combined to calculate the probability of 

every pass permission state P(PPm): 

 



M

m

mPPP
1

1)( . (8) 

In this way, the pass permission from an ego vehicle 

perspective is simplified in states (m = 1, 2, ..., M) that 

indicate different behaviors of the ego vehicle at the 

intersection: 

 Not permitted (m = 1). The ego vehicle shall not 

enter the intersection (for example, if a red light is valid for 

its lane). 

 Permitted (m = 2).

corridor of ego vehicle is not congested. However, it shall 

yield the right of way to oncoming vehicles or vulnerable 

road users at parallel crosswalks/bike-lanes. 

 Permitted (time limited) (m = 3). Ego vehicle shall 

47©2017 Journal of Traffic and Logistics Engineering

Journal of Traffic and Logistics Engineering Vol. 5, No. 2, December 2017



  

stop before the intersection unless the stopping cannot be 

made safely. Otherwise, the permission is interpreted as 

permitted. 

 Protected (m = 4). While turning the ego vehicle is 

protected from oncoming vehicles and crossing 

bikes/pedestrians, which shall not be permitted to entrance 

the intersection. 

 Protected (time limited) (m = 5). Ego vehicle shall 

stop before the intersection unless the stopping cannot be 

made safely. Otherwise, the permission is interpreted as 

protected. 

 Permitted turn on red (m = 6). It is allowed to turn 

right just if the way is clear and the maneuver is safe from 

a collision with other road users. 

 Right before left (m = 7). The ego vehicle shall yield 

the right of way to the vehicles crossing from the right. 

 With precedence (m = 8). Other crossing vehicles 

shall give way to the ego vehicle. 

 Yield (m = 9). Passing is allowed, but the ego vehicle 

has to yield the right of way to other vehicles. 

 Stop (m = 10). The ego vehicle shall stop before 

entering the intersection and then give way to other 

possible crossing vehicles. 

Once every pass permission state is explained, the key 

question is how to combine both traffic lights and traffic 

signs functions in a coherent way. This idea is illustrated 

in Fig. 3. 

 

Figure 3. Combination of P(TLk) and P(TSl) to calculate the pass 

permission probability mass function P(PPm). 

Considering the regulations indicated in [1], the traffic 

flow at intersections is first controlled by traffic lights, 

then traffic signs (if there are no traffic lights) or by the 

right before left rule. Taking this into account, the 

combination is done in a very simple manner: the mode of 

P(TLk) is considered to update the states of P(PPm) if the 

value of the mode is large enough. That is: 
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where h(∙) is the mapping function that indicates which 

probability mass function is used to update the pass 

permission (P(PPm)). The terms ETL and ETS represent the 

difference between the mode and the mean value of the 

traffic lights and traffic sign function, respectively: 
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Here, Th corresponds to a threshold set empirically to 

0.2. 

In other words, the pass permission is mapped 

considering the traffic light states if the value with the 

largest probability is at least 20% over the mean. Else, the 

traffic sign states are considered. Moreover, the default 

state is set to right before left if there is no traffic sign. 

IV. PROBABILITY MASS FUNCTION OVER TIME 

Another required task is to interpret temporal changes 

of the calculated probabilities in a proper manner. This 

section explains how the interpretation over time is done 

using the traffic light probability mass function P(TLk) as 

example. 

In real situations, the traffic lights are often erroneously 

(or not) detected, so that the resulting probability varies 

over time in an illogical way (e.g. from not permitted to 

permitted suddenly, and back to off...). These errors are 

typically due to false detections of the camera, wrong 

assignment into lanes, occlusions, etc. An example of 

these typical fluctuations of the traffic light states over 

time (P(TLk, n)) is shown in Fig. 4. 

 

Figure 4. Example of a probability mass function representing the 
possible traffic light states over time P(TLk;n). 

Thanks to this example, it is possible to note visually 

how often the mode value (mode(n)) changes over time. 

The mode is off (i.e. k = 1) until n0, then it changes to not 

permitted until n2, and so on. Consequently, it becomes 
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obvious the need of mitigating suddenly changes over time. 

At first, in order to keep this smoothing very simple, the 

function is smoothed over time using a simple exponential 

moving average approach: 
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where P
*
(TLk, n) represents the smoothed function and the 

smoothing factor (α = {0, 1}) indicates how effective the 

smoothing is. Nevertheless, observing the values of the 

traffic light state not permitted (i.e P(TL2, n)), it is easy to 

notice if a constant value of α is appropriate or not: an 

increasing and decreasing probability (see the fluctuation 

at P(TL2, n0) and P(TL2, n4)) would smooth P(TL2, n) with 

the same value of α. From a logical point of view, a 

decreasing probability of not permitted requires a smaller 

value of α than an increasing one (since it could be unsafe 

to smooth the probability of a properly recognized red 

traffic light). Therefore, we use a conditional exponential 

moving average with different α values to increase and 

decrease probabilities (αin and αde): 
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Thanks to this concept, we can introduce the terms 

conservative and non-conservative smoothing. 

Accordingly, the smoothing is conservative when αin < αde. 

The concept of a conservative or non-conservative 

smoothing is graphically explained in Fig. 5 with an 

example. 

 

Figure 5. Examples of different exponential smoothing over time (normal, 
conservative and non-conservative). 

Nevertheless, the position of the ego vehicle with 

respect to the intersection has to be taken into account in 

order to update the changes of the probability mass 

function over time. For example, let’s say one is 

approaching the intersection with the intention of turning 

left. Firstly, the focus of a human driver approaching the 

intersection is to interpret how to pass it. Once the ego 

vehicle is inside the intersection, the perceived pass 

permission remains valid until one has completed the left 

turn maneuver. In other words, a human driver pays 

special attention to the possible changes over time when 

approaching the intersection. Then, once inside it (i.e. the 

traffic light is behind the ego vehicle), the last interpreted 

pass permission is kept fixed until the end of the whole 

maneuver. In order to imitate this behavior in our approach, 

the factor δ(d) is introduced in the equation (11), so that 

the resulting smoothed function P
*
(TL, n) also depends on 

the distance d from the rear axis of the ego vehicle to the 

start of the intersection: 
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where the variable C = {1, 2, 3} represents the crossing 

state of the ego vehicle with respect to the intersection (i.e. 

crossing, approaching and unknown respectively). 

 

Figure 6. Value of δ depending on the distance to the start of the 
intersection d and the crossing state C. 

As it can be seen in Fig. 6, the value δmin ensures that 

even when the ego vehicle is already inside the 

intersection, the smoothing is always active (the closest 

δ(d) to 0.0 is, the slower is the update of the states over 

time). Based on experimental results, we set the value of 

δmin to 0.01. On the other hand, the variables db and dfov 

indicate the distance from the rear axis to the front bump 

of the ego vehicle and the optimal field of view distance to 

detect traffic lights, respectively.  

TABLE I: SELECTED VALUES OF ΑDE AND ΑIN 

 αde αin 
Traffic lights 
Off 
Not permitted 
Permitted 
Permitted (limited) 
Protected right turn 
Protected left turn 
Protected right (limited) 
Protected left (limited) 
Permitted right on red 

 
0.5 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 

 
0.01 
0.5 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 

Traffic signs 
No traffic sign 
Right before left 
With precedence 
Yield 
Stop 

 
0.5 
0.5 
0.5 
0.5 
0.5 

 
0.5 
0.5 
0.5 
0.5 
0.5 

Pass permission 
Not permitted 
Permitted 
Permitted (limited) 
Protected 
Protected (limited) 
Permitted right on red 
Right before left 
With precedence 
Yield 
Stop 

 
0.5 
0.8 
0.8 
0.8 
0.8 
0.5 
0.5 
0.5 
0.5 
0.5 

 
0.9 
0.8 
0.8 
0.8 
0.8 
0.5 
0.5 
0.5 
0.5 
0.5 
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Table I shows the selected values of αde and αin for every 

state. These values have been selected and optimized 

empirically based on experimental results. 

V. RESULTS 

The main objective of the following experiments is to 

test the proposed approach in real traffic conditions. That 

is to say, the focus is not to analyze the 

detection/recognition of traffic lights/signs and 

corresponding assignment to lanes, but how the outputs of 

the perception module are interpreted to set the pass 

permission. For this purpose, we tested our approach in 

several routes in the Wolfsburg city. However, we selected 

two representative scenarios that help the reader to 

understand how our approach works in real situations. The 

location of these two scenarios in the selected route is 

illustrated in Fig. 7. 

 

Figure 7. Route selected for testing the proposed approach. The image at 
the top-left illustrates the selected route in Wolfsburg city. The two 

rectangles marked in red represent the scenario A (bottom) and B 

(top-right). The driving path is marked with a yellow arrow along the 
route. 

 

Figure 8. Explanation of the result's view: traffic lights (top-left), traffic 
signs (bottom-left), pass permission (top-right) and crossing state 

(bottom-right). Inside the top-left rectangle, a state example is illustrated 

to clarify its meaning: every state of a probability mass function is 

represented as a rectangle and colored in green according to its current 
probability value. Its probability over time is plotted in red, so that the 

right border indicates the current time (n = n0) and the left one indicates 

three seconds later (n = n0 - 3). For example, if the probability of a state 
decrease linearly in three seconds from 1.0 to 0, its corresponding plot 

would show a red line from the bottom-right (P(state, n = n0) = 0.0) to the 

top-left of the rectangle (P(state, n = n0-3) = 1.0). 

In order to present the results and their changes over 

time in the scenarios A and B, Fig. 11 and Fig. 13 illustrate 

a plot of the probability of every state. Moreover, Fig. 12 

and Fig. 14 show the results in 4 different instants (see 

time reference in Fig. 7). Namely, every figure contains 4 

columns that represent 4 different moments. At the top of 

every column it is shown an image of the front camera. 

Hereunder, the second image from the top illustrates the 

corresponding road-graph visualization [9]. This format 

represents the road network as graphs, in which every 

graph can be instanced with different attributes as traffic 

lights, traffic signs, speed limits, etc. The road-graph 

corresponds to the output of the perception module (i.e. the 

assigned traffic lights/signs to lanes). Furthermore, the 

image at the bottom corresponds to the result of the 

interpreted pass permission. The distribution of its content 

is graphically explained in Fig. 8. 

The result in scenario A is illustrated in Fig. 11 and Fig. 

12. Here it can be seen how the proposed approach 

interprets the pass permission at three different 

intersections. First, the ego vehicle drives through an 

intersection controlled by a green traffic light, so that the 

resulting pass permission state is permitted. The changes 

of the pass permission state can be seen in the first and 

second column (i.e. from time 00:11 to 00:15), in which 

the ego vehicle approaches the second intersection. First, 

the pass permission changes from permitted to right before 

left as default and suddenly a priority road traffic sign is 

detected so that the corresponding probability increases 

over time. In other words, P(TSl=3) increases from 0.0 to 

≈1.0 when the traffic sign is detected (see camera image in 

the second column). In the third column a very 

representative situation is illustrated: the next intersection 

is not controlled any more by the priority road traffic sign, 

but by the red traffic light. Therefore, the corresponding 

pass permission changes quickly to the state not permitted 

(time 00:27). It is to say, that the probability of the most 

probable traffic light state P(TLk=2) was large enough (see 

equation (9)), so that the pass permission is mapped 

directly with the probability of the traffic light states and 

the probability of the traffic signs P(TSl=3) is not 

considered any more. In the fourth column it is illustrated 

how the traffic light color changes from red to green being 

yellow for approximately one second (time 00:39). 

On the other hand, Fig. 13 and Fig. 14 illustrate the 

results for a less common situation: an additional traffic 

light with a not detected right arrow. In the first column 

(time 00:07), it is possible to see the change between the 

states right before left and not permitted, due to the 

recognized red traffic light. The next column illustrates 

how the traffic light with a right arrow is not detected (see 

the second column at time 00:11). For this reason, the pass 

permission is interpreted as permitted. In the third column 

of Fig. 14 (time 00:14) it is to be noted that both traffic 

lights are outside the image and, consequently, there is no 

input from the perception. In fact, this causes an 

smoothing: i.e. the value of P(TL3) decreases very slowly 

but is still the mode of the function. Therefore, the pass 

permission probability mass function is updated with the 

traffic lights even if the traffic sign yield is detected. 

Finally, once the ego vehicle leaves the intersection (i.e. 

the crossing state changes from crossing to unknown), the 

default state right before left increases its probability. 
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Figure 9. Simplification of the main system architecture. 

 

Figure 10. Probability calculation of the assignment of traffic lights and traffic signs to the ego lane. 

 

Figure 11. Result of scenario A: plot of the probability of all states over time. 

 

Figure 12. Result of scenario A: 4 representative frames in different times. 
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Figure 13. Result of scenario B: plot of the probability of all states over time. 

 

Figure 14. Result of scenario B: 4 representative frames in different times. 

VI. CONCLUSION 

In this paper a concept to interpret the pass permission 

at urban intersection has been introduced. The main goal 

of the proposed approach is to calculate the conditional 

probability of every input and fit them into a probability 

mass function in which every discrete state corresponds to 

one concrete pass permission. In other words, the idea is to 

combine the probability that every possible state of traffic 

lights and traffic signs is valid for the ego vehicle and 

generate a set of pass permission states with its 

corresponding probabilities. This approach should enable 

to handle uncertainty and fluctuations over time in very 

simple manner. Compared to state-of-the-art solutions, a 

very important advantage of our system is that it may be 

applied without Vehicle-2-X communication. 

Experiments in real world scenarios illustrate how the 

proposed system works in real situations as well as ease to 

identify the advantages and disadvantages when some 

information is missing. 

Future research will focus on optimizing the process of 

combining traffic lights and traffic signs. Furthermore, 

next steps and future research work will be achieved to 

improve the interpretation of fluctuations over time.  
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Pedro, “Autonomous vehicle control systems for safe crossroads,” 

Transportation Research Part C: Emerging Technologies, vol. 19, 

no. 6, pp. 1095–1110, 2011. 
[5] T. Gindele, D. Jagszent, B. Pitzer, and R. Dillmann, “Design of the 

planner of team annie ways autonomous vehicle used in the darpa 

urban challenge 2007,” in Proc. Intelligent Vehicles Symposium, 
2008 IEEE. 2008, pp. 1131–1136. 

[6] M. Hülsen, J. M. Zöllner, and C. Weiss, “Traffic intersection 

situation description ontology for advanced driver assistance,” in 
Proc. Intelligent Vehicles Symposium, 2011, pp. 993–999. 

[7] A. Furda and L. Vlacic, “Enabling safe autonomous driving in 

real-world city traffic using multiple criteria decision making,” 
IEEE Intelligent Transportation Systems Magazine, vol. 3, no. 1, pp. 

4–17, 2011.  

52©2017 Journal of Traffic and Logistics Engineering

Journal of Traffic and Logistics Engineering Vol. 5, No. 2, December 2017



  

[8] J. L. Peterson, “Petri net theory and the modeling of systems,” 

Computer Journal, vol. 25, no. 1, 1981. 

[9] K. Homeier and L. Wolf, “Roadgraph: High level sensor data 

fusion between objects and street network,” in Proc. 14th 
International IEEE Conference on Intelligent Transportation 

Systems, 2011, pp. 1380–1385. 

 
David Perdomo was born in Las Palmas de 

Gran Canaria (Spain) in 1986. He received his 

Bachelor’s degree of Telecommunication 
Engineering from Universidad de Las Palmas 

de Gran Canaria in 2010, and the M.Sc. degree 

from Technische Universität Braunschweig 
(Germany) in 2015. He is currently pursuing 

the Ph.D. degree from Freie Univesität Berlin 

(Germany). At present Mr. Perdomo is a Ph.D. 
candidate in the Volkswagen Group Research / 

Automated Driving. His research interest include machine learning, 

scenario interpretation, signal processing and decision making with focus 
on applications for autonomous vehicles. 

 

Rene Waldmann was born in Brunswick 
(Germany) in 1981. He received his Diploma 

Degree in Computer Science in 2007 and Ph.D. 

in 2012 at Technische Universistät 
Braunschweig. 

Dr. Waldmann is currently software engineer 

and project manager at the Volkswagen Group 
Research / Automated Driving. His research 

interest includes Machine Learning, scenario 

understanding, trajectory planning and 
artificial intelligence. 

Raúl Rojas was born in Mexico City (Mexico) 

in 1955. He received his Bachelor of 

Mathematics in 1977 and his Master of 

Science (Mathematics) in 1980 at the 
Department of Mathematics, National 

Polytechnic Institute, Mexico. In 1980 he 

received his Master of Economics at the 
Department of Economics, National 

Autonomous University of Mexico (UNAM). 

He obtained his Ph.D. at the Otto Suhr Institute, 
Free University of Berlin in Economics and 

Social Sciences. He is currently leader professor at the Dahlem Center for 

Machine Learning and Robotics at the Free University of Berlin, 
Germany. His research areas are machine learning, computational 

science, robotics, autonomous driving, i.a. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

53©2017 Journal of Traffic and Logistics Engineering

Journal of Traffic and Logistics Engineering Vol. 5, No. 2, December 2017




