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Abstract—Active safety systems have a huge potential of 

increasing road traffic safety and are a necessary 

component of vehicles for autonomous driving. An 

algorithmic challenge of such systems is the prediction of 

collision-free trajectories in complex scenarios with multiple 

dynamic objects and curved roads. This work proposes an 

algorithm able to find safe trajectories in such an 

environment. The algorithm is dividing the prediction 

horizon into two intervals. In the first interval multiple 

collision-free trajectories are computed using an extension 

of the CL-RRT algorithm, introduced as Augmented CL-

RRT, which contains a controller to consider the nonlinear 

dynamics of vehicles.  The safety levels of the found 

trajectories are evaluated using the second prediction time 

interval, by taking into account the steering effort that is 

necessary to travel to a safe region on the road. The 

efficiency of the proposed algorithm is demonstrated 

exemplarily using a simulation with multiple dynamic 

objects in a traffic scenario with a curved road. 

 

Index Terms—trajectory planning, critical traffic scenarios, 

multiple dynamic objects 

 

I. INTRODUCTION 

Active Safety Systems in vehicles like the 

Autonomous Emergency Braking [1], which perform 

autonomous interventions into the longitudinal dynamics 

are already on the market today. Future systems will be 

able to perform also autonomous interventions into the 

lateral dynamics, i. e., autonomous steering, in critical 

traffic scenarios [2]. This development will also be 

supported by the technological progress related to the 

field of autonomous driving. But it should be mentioned 

that autonomous intervention in the vehicle dynamics in 

the last few moments before a crash might occur are of 

high complexity, since the prediction algorithms must be 

able to model harsh maneuvers accurately. These 

interventions require the planning of safe trajectories in 

complex traffic scenarios with many static and dynamic 

objects like other vehicles, pedestrians, etc. 

Trajectory planning algorithms use as input a 

representation of the driving environment provided by 
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sensors like radar, video or laserscanner and have the task 

of finding a suitable trajectory in this environment that 

avoids a collision. Trajectory planning for collision 

avoidance can be decomposed into two tasks. The first 

can be named “find-goal” problem, which aims at 

defining a safe goal-location for the vehicle [3]. The 

second can be named “path-planning to a goal” problem, 

which has the aim to find a path from the current location 

to the goal-location. Algorithms for treating the first task 

are mainly based on expert knowledge and application 

specific. For the second task there exists a large number 

of algorithms which were mainly developed by the 

robotics community. Two challenges that must be 

addressed by trajectory-planning algorithms for traffic 

scenarios are the nonholonomic constraints of the vehicle 

motions models and the dynamic, non-deterministic 

vehicle environment. Deterministic trajectory planning 

algorithms such as A* [4] and its dynamic extensions D* 

[5] and D*-lite [6] cannot find a trajectory which follows 

the nonholonomic constraints of the vehicle. 

Consequently, a probabilistic approach called Rapidly-

exploring Random Tree (RRT) algorithm [7] has gained a 

lot of popularity because of its fast runtimes and ability 

for planning the trajectory with nonholonomic constraints 

of the vehicle. The trajectory generation for 

nonholonomic vehicles is of great importance, especially 

if the goal is the development of a vehicle safety system. 

In [8] seventh order Bezier curves and in [9] third order 

B-spline basic functions are used to find smooth 

trajectories that do not violate the kinematic constraints 

of a vehicle. In [10] B-spline curves and the RRT 

algorithm are combined to find a collision free trajectory 

by taking into account interventions in the lateral and 

longitudinal dynamics. A restriction of this algorithm is 

that it can find the trajectory only among linearly moving 

obstacles.   

Many variants of the RRT algorithm have been 

proposed. RRTX [11] is a motion replanning algorithm for 

real-time navigation through a dynamic environment. 

After finding a shortest path for a specific configuration, 

the RRTX algorithm replans the shortest path to a goal by 

continually repairing it as changes to the state space are 

detected. However, the algorithm needs an initial shortest 
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path and finding this path by taking into account the 

predicted motion of objects is not the focus of RRTx. 
Closed-Loop RRT (CL-RRT) [12] runs a forward 

simulation using a vehicle model to compute the 

predicted trajectory whose feasibility is checked against 

vehicle and environmental constraints. It uses a 

drivability map which is regularly updated to check the 

validity of nodes and edges of the tree. The algorithm 

takes into account the vehicle dynamics by using a 

controller and the motion of objects in the vehicle 

environment. This algorithm has been successfully 

applied in the 2007 DARPA Urban Challenge. In [12] a 

complete stop is used as safe state at the end of a CL-

RRT trajectory. In critical traffic situations with many 

dynamic obstacles this might not be a good choice since 

zero velocity does not necessarily imply a safe state.  

This paper proposes an extension of the CL-RRT 

algorithm for finding safe trajectories in multi-object 

environments, while also considering nonlinear motion 

models for obstacle predictions and simultaneous 

interventions in the longitudinal and lateral dynamics of 

the vehicle. The algorithm also uses the state-time space 

concept of Time-Based-RRT (TB-RRT) [13], where a 

time coordinate is added to the space coordinates of the 

system and each node of the tree denotes a specific state 

in a specific time.  

The paper is organized as follows: Section II 

formulates the problem of planning safe trajectories, 

Section III introduces the models and controllers that are 

used for vehicle motion planning in Section IV, where 

also the Augmented CL-RRT algorithm is introduced, 

Section V deals with choosing the safest trajectory from a 

set of computed trajectories, and Section VI presents 

simulation results. Throughout this work, vectors are 

denoted by lower case bold letters. 

II. PROBLEM FORMULATION 

In this work the primary objective is to plan a 

collision-free and safe path for the EGO-vehicle
1

 in 

critical traffic scenarios. Here, a “safe path” means that 

the chosen trajectory is collision-free for a longer time-

interval than the one for which the trajectory is planned. 

A two-dimensional space is assumed for modelling a 

location-point in a traffic-scenario. The vehicle has 

nonlinear dynamics 

 ( ) ( ( ), ( ))t f t ts s u   (1) 

where ( ) mt u  is the control input at time t  and 

( )t s  denotes the set of points in 2  which represent 

the area that is occupied by the vehicle at time instance t . 

The initial state at 0t t  is given by 0( )ts . The path-

planning problem implies the design of the control input 

( )tu  over a finite prediction time-horizon of length 1,  

i. e.  0 0 1,t t t   . The set of constraints like bounds on 

the control input, static and dynamic obstacle avoidance 

or rules imposed by the road must be taken into account 

                                                           
1
 The vehicle in which the proposed path planning algorithm is running. 

when computing ( ),tu so that the resulting ( )ts is 

collision-free, i. e., ( ) ( ),freet S ts  where ( )freeS t  

expresses the area in 2  which is not occupied by other 

objects at prediction-time .t  

A prediction time-horizon of approximately 1 2  s is 

a suitable value for performing avoidance maneuvers in 

most critical traffic scenarios. But the avoidance of a 

collision does not imply the chosen trajectory is safe 

since the chosen path may lead to another critical 

situation, e. g., the EGO-vehicle may avoid a collision by 

steering and changing the lane but it leads to a vehicle 

state that can hardly be controlled after the steering 

maneuver. That is why in this work a large prediction 

interval  0 0,t t    is divided into the two intervals 

 0 0 1,t t    and 1 0, .t       

So, to avoid collisions by autonomous interventions, 

the problem in this work is stated as: 

 

If a critical traffic situation is identified, find control 

inputs ( )k tu so that the resulting ( )k ts  are collision-free, 

i. e., ( ) ( )k freet S ts  for  0 0 1,t t t   , and estimate the 

level of safety of the resulting trajectories in the interval 

1 0, .t      Choose that control input ( ),k tu with the 

highest level of safety. 
 

 

To find suitable control inputs ( )k tu an Augmented 

CL-RRT algorithm will be introduced in Section IV and 

the assessment of levels of safety is presented in Section 

V. The RRT algorithm is an incremental algorithm which 

can incorporate a vehicle dynamic model to generate 

realistic vehicle trajectories. Hence, a vehicle dynamics 

model is a base component of the trajectory planning task 

and will be presented in the next section. 

III. VEHICLE MODEL AND CONTROLLER  

Although simple kinematic vehicle dynamics models 

like the one-track model or the geometric model [14] are 

frequently used in driver assistance algorithms, in this 

work the EGO-vehicle is modelled with a two-track 

model to be able to describe the vehicle behavior 

accurately also for harsh de-escalation maneuvers, where 

values of the lateral accelerations exceed 5 m/s
2
. The two 

track incorporates effects of individual tire forces and is 

described by three coupled differential equations, where 

the state variables are the velocity v , the sideslip angle 

 and yaw rate . The control inputs to the model are the 

four angles of the wheels with respect to the longitudinal 

axis of the vehicle , , ,fl fr rl rr     and the four 

longitudinal slip values of the tires , , , ,, , , ,l fl l fr l rl l rrs s s s  

where the letters in the subscript stand for “front-left”, 

“front-right”, “rear-left”, and “rear-right”. Whereas the 

angles are determined by the steering wheel in a vehicle, 

the longitudinal slip values are determined by the 

acceleration or brake pedal. The angle of a wheel with 
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respect to the longitudinal axis of the vehicle is 

responsible for the lateral force acting at this tire and the 

longitudinal slip value is responsible for the longitudinal 

force acting at the tire. Details about the two-track model 

can be found in [14]. Being able to influence the forces 

on the tires and thus the vehicle motion, these wheel 

angles and the slip values are incorporated in the input 

vector ( )tu  for the trajectory planning task.  

, , , ,[ , , , , , , , ] .fl fr rl rr l fl l fr l rl
T

l rrss s s   u    (2) 

The inputs that are necessary to move the vehicle from 

its current position 0( )ts  to a safe region are determined 

using a Model Predictive Control (MPC) approach in this 

work. This is achieved by computing the input 

0( )tu based on an anticipation of future events up to the 

time 0 .t    The anticipation is realized using motion 

models for the prediction of all dynamic objects in the 

time interval  0 0,t t    and a geometric description of 

the road and other stationary objects. For the first part of 

this prediction horizon, i. e.,  0 0 1,t t   the Augmented 

CL-RRT algorithm is searching for a collision-free path 

and a lower-level controller is used to move the EGO-

vehicle along the path in this prediction time, thereby 

generating the inputs ( )tu  up to time instance 0 1.t    

However, from these values that lead to a collision-free 

path, only 0( )tu is finally used for the MPC-control of the 

vehicle. Subsequently, the input 0( )t tu is determined 

based on an anticipation of future events up to the time 

0 ,t t   etc. 

The lower-level controller that is used as part of the 

MPC approach to determine the inputs , , ,fl fr rl rr     in 

( )tu  for the prediction horizon is presented in the 

following. The inputs , , , ,, , ,l fl l fr l rl l rrs s ss  are given by 

acceleration profiles as will be presented in Section IV. 

The goal of the lateral dynamics controller is to set the 

angles , , ,fl fr rl rr     so that the vehicle will follow a 

reference trajectory, which is computed by the 

Augmented CL-RRT algorithm. Fig. 1 visualizes the 

location of the controller in the signal flow. 

 

Figure 1. The controller is computing elements of ( )tu  

The optimization problem of the controller is to 

minimize the cost function latJ  which is defined as  

1

0

2( , , , ) ( ( ) ( )) ,
ct

lat rfl fr rl r ef

t t

rJ t t





     s s           (3) 

where ( )ts  and ( )ref ts  are the actual and reference 

position of the EGO-vehicle. For the implementation 

used in this work ( )ts is uniquely defined by the 

coordinates [ , ]X Y  of the center of gravity and the yaw 

angle   of the EGO-vehicle. Thus, the steering angle is 

adapted in the controller in such a way that the deviation 

between the actual location of the center of gravity and its 

desired location are minimized as well as the deviation 

between the actual yaw angle and the desired yaw angle. 

The desired values are computed by the Augmented CL-

RRT algorithm, which will be introduced in the next 

section. 

IV. DYNAMIC MOTION PLANNING  

After a brief review of the basic RRT algorithm, this 

section introduces the components that are used in order 

to realize the motion planning for safe trajectories in 

dynamic multi-object traffic scenarios. 

A. Rapidly-Exploring Random Tree  

The basic RRT algorithm was introduced in [15] for 

trajectory planning to reach a goal state from an initial 

state under a differential constraint. In an iterative process 

the algorithm samples a random point rands usually with 

some bias towards a goal goalS  and extends the tree by 

incremental motion towards rands  from the closest ks  

that is stored in the tree using differential constraints like 

in (1) 

1k k k kf t   s s s u (4) 

where t  is the time interval for which the tree is grown. 

The new state 1ks  is added to the tree if 1 .k freeS s  The 

algorithm is terminated as soon as the tree contains a state 

in the goalS  region. 

B. Identification of a Critical Traffic Scenario  

As mentioned in the problem formulation in Section II, 

the path planning for safe trajectories is activated only if 

a critical traffic situation is identified. For this task the 

Time-To-Collision ( )TTC  criticality criteria is used in 

this work [16]. If a collision of the EGO-vehicle is 

detected with any other obstacle within a TTC of 2 s in 

future, the situation is said to be critical. Obstacles 

include static objects and dynamic objects like other 

vehicles, pedestrians, etc. It is assumed that the EGO-

vehicle is equipped with sensors which give the 

information about the current state of other obstacles like 

their position, velocity, acceleration, yaw angle, etc. and 

also about the physical structure of the environment like 

road width, curvature, etc. Further, while predicting the 

trajectory for obstacles it is assumed that vehicles tend to 

follow their track with constant velocity and pedestrian 

travel linearly with constant velocity. Predictions with 

these assumptions generate the future positions 

, ( )Obj n ts for all ObjN  obstacles in the vicinity of the 

EGO-vehicle for the next   seconds, i. e., 1,..., Objn N  

Computation 
of temporary 

goal  s 
ref 

(t) 
(RRT) 

Controller EGO-Vehicle  
Model 

s ref (t) u (t) s (t) 

Road 
description 

Static  
Objects 

Dynamic Objects 
(motion models) 

Augmented CL-RRT 
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and 0 0[ , ].t t t   A collision between the EGO-vehicle 

and the n th object at time t  occurs if the indicator 

function  

,

,

1, ( ) ( ) ,
( ( ), ( ))

0,

Obj n

c Obj n

if t t
I t t

otherwise

 
 


s s
s s  (5) 

has the value 1. The difference between the first time 

instance t  when a collision is identified and the current 

time instance 0t  is the .TTC  

C. Full Braking  

If a critical situation is identified, i. e., 2TTC  s, the 

first step is to check if a collision can be avoided just by 

full breaking without any lateral intervention. If it is 

possible, a full braking maneuver is performed without 

using the Augmented CL-RRT algorithm and the 

resulting braking trajectory is considered a safe trajectory. 

This type of safe trajectory represents the Autonomous 

Emergency Braking that is already implemented in 

modern vehicles. 

D. Augmented CL-RRT Algorithm 

Some extensions to the RRT algorithm are introduced 

in this work in order to generate safe trajectories. They 

are presented in the following. 

1) State –Time space 

Each node in the RRT algorithm is not just storing the 

position [ , ]X Y  of the EGO center of gravity but also its 

yaw angle ,  the velocity ,v the steering angle   from 

the two-track-model as well as the time t when the node 

would be reached. This is necessary since in a dynamic 

environment the free space ( )freeS t  is also time-

dependent and a representation of the predicted traffic 

situation must be available for all nodes in order to grow 

the tree. The computation of the time dependent 

( )freeS t is presented next. 

2) Multiple hypothesis prediction 

Although it is assumed that vehicles tend to follow a 

road and pedestrians travel linearly with constant velocity 

as mentioned in IV.B for the computation of , ( ),Obj n ts  

many possible hypothesis can be realized by introducing 

uncertainty in the longitudinal acceleration and lateral 

position of dynamic obstacles. In order to model ( )freeS t , 

the possible location of the n th dynamic obstacle is not 

represented only by , ( )Obj n ts  but by , ( )Obj n ts in the form 

of an ellipse that grows with increasing prediction time. 

The empirical rule used to grow the ellipses is to expand 

their axes according to the acceleration values that might 

occur in lateral and longitudinal direction, i. e., approx. 

4 m/s
2
. The applied rule also takes into account that 

obstacles move on the road, i. e., the minor axis is 

increased only till half of the road width. For static 

obstacles , , ,( ) ( ) .Obj n Obj n Obj nt t s s s  Denoting the area 

in 2  that is covered by the road with ,RoadS  the free 

space ( )freeS t  at time instance t  is  

 ,

1

( ) ( ).\
ObjN

free Road Obj n

n

S t S t



 s                (6) 

3) Goal selection 

As mentioned in Section I, the “find-goal” task is 

application specific. For the problem in this work the 

region goal RoadS S  that is used by the Augmented CL-

RRT algorithm is defined by the point where the center of 

gravity of the EGO-vehicle will lie at time instance 

ot    according to the prediction with the two-track-

model assuming that the current velocity is constant in 

the prediction interval. goalS is the area around this point 

that lies on the road and which is included in 

( ).free oS t    

4) Sampling strategy 

The samples ( )ref ts  are randomly sampled with 

uniform distribution in region of the road between 0( )ts  

and .goalS In case of roads having multiple tracks along 

the same direction the sampling is performed only in the 

region containing the tracks in the same direction in 

which the EGO-vehicle is driving, otherwise on the 

whole road. 

5) Longitudinal acceleration profiles 

To take into account not only the steering capabilities 

of the EGO-vehicle, in addition to the angles 

, , ,fl fr rl rr     that are computed by the controller 

aiming to reach the sampled locations ( ),ref ts  also 

predefined acceleration profiles, which define the 

remaining inputs , , , ,, , ,l fl l fr l rl l rrs s ss  of ( )tu  are 

integrated in the Augmented CL-RRT algorithm.  Using 

accM  profiles, e. g., 3accM   for “no braking”, “mean 

acceleration”, and “strong braking”, leads to maximally 

accM  collision-free trajectories for the interval 

1, .o ot t      So, each resulting collision-free trajectory is 

the result of interventions ( )tu  in the lateral and 

longitudinal dynamics. 

V. SAFE TRAJECTORY CRITERIA  

The Augmented CL-RRT algorithm finds multiple 

trajectories (up to )accM  with different acceleration 

profiles for the prediction time interval 1, .o ot t      As 

mentioned in Section II an evasion-trajectory is 

considered safe if it leads to a vehicle state from where 

the vehicle can easily be controlled to follow the road. In 

order to estimate this level of safety for each of the 

trajectories, a further prediction for the time interval 

1 0,t      is performed. To do so, for each of the initial 

trajectories a new goal , 0( ),
accgoal m freeS S t    

1...acc accm M  is defined. Similarly as presented above 

for the goal selection of goalS , each goal , accgoal mS  is 
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computed by predicting the area on the road where the 

EGO-vehicle should be at time instance 0t    starting 

from its current location 1( )
accm s  and assuming that the 

velocity at 1  remains constant. Then the controller for 

the angles , , ,fl fr rl rr     form Section III is used again 

to move the vehicle on the road from 1( )
accm s  to 

, accgoal mS  and the corresponding steering angle values are 

computed. The level of safety for the accm th  trajectory 

is given by the maximum steering angle input 
accm  on 

its collision-free path from 1( )
accm s  to , .

accgoal mS  Small 

values of 
accm correspond to trajectories with a high 

safety level since the maneuver required to reach the goal 

are soft, whereas high values of 
accm correspond to 

trajectories with a low safety level. Thus, the safest 

trajectory for the problem formulated in Section II is the 

one indexed with 

1 acc
acc

safe M
m

m                          (7) 

VI. SIMULATION RESULTS  

A Matlab-based simulator is developed and used to 

design traffic scenarios and to evaluate the presented 

algorithm. It produces 2D environments with EGO and 

non-EGO-vehicles, pedestrians, roads, and stationary 

objects. The geometrical description of the environment 

and obstacle parameters like position, speed, etc. which 

are available in the simulator are used as input data for 

the algorithm.  

 

Figure 2. Scenario 1 

Exemlarily Fig. 2 and Fig. 3 show two similar traffic 

scenarios at the time instant ot  when a collision is 

predicted for the EGO-vehicle with vehicle 1 which has 

braked sharply because of a pedestrian crossing the street. 

The direction of travel of all vehicles and pedestrian is 

shown by arrows and the non-EGO-vehicles are 

numbered. EGO-vehicle, vehicle 2 and vehicle 3 are 

traveling with same speed of 50v  km/h. The only 

difference between two scenarios is the initial position of 

the vehicle 3. The Augmented CL-RRT algorithm used 

here finds safe trajectories for a strong deceleration, a 

positive acceleration and a constant velocity profile. The 

best trajectory is then selected according to (7). The end 

state of the best trajectory is highlighted with thick 

boundary.   

 

Figure 3. Scenario 2 

In both scenarios, the EGO-vehicle cannot avoid the 

collision just by breaking because it will lead to a 

collision with vehicle 2 which is traveling just behind the 

EGO-vehicle in the same lane. Hence, a safe trajectory 

needs to be computed by the Augmented CL-RRT taking 

into account vehicle 1, vehicle 2 vehicle 3 and the 

pedestrian. In both scenarios 3 longitudinal acceleration 

profiles are used, i. e., 3,accM   implementing 

maneuvers for “no braking”, “accelerate” ( 4  m/s
2
), and 

“brake” ( 8  m/s
2
). 

In scenario 1, the Augmented CL-RRT algorithm is 

unable to find a collision-free trajectory for “brake” as 

moving to the parallel track with deceleration leads to a 

collision with vehicle 3. But the algorithm is able to find 

the trajectories for the “no braking” and “accelerate” 

profiles. They are shown in Fig. 2. The trajectory with the 

“accelerate” profile is finally chosen as the safe trajectory 

because it requires less steering effort to travel towards its 

updated goal. 

In scenario 2, the Augmented CL-RRT algorithm is 

just able to find one collision-free trajectory, the one for 

the “brake” profile as moving to the parallel track with 

constant velocity or with acceleration will lead to a 

collision with vehicle 3. So, in this scenario the maneuver 

leading to a collision-free trajectory implies a hard 

intervention into the longitudinal and lateral dynamics of 

the EGO-vehicle. 

VII. CONCLUSION 

This work is introducing an algorithm for finding safe 

trajectories in critical dynamic multi-object traffic 
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scenarios. To do so, the prediction horizon is divided into 

two intervals. In the first interval trajectories are 

computed based on extensions of the CL-RRT and a 

lower-level controller that takes into account the non-

linear dynamic model of the EGO-vehicle, leading to 

collision-free paths. The extensions of the CL-RRT are 

introduced in this work and the resulting algorithm is 

named Augmented CL-RRT. In the second interval an 

evaluation of the found trajectories regarding a level of 

safety is used to choose the safest trajectory. Two 

examples with multiple dynamic objects in a curved-road 

scenario are presented to demonstrate the efficiency of 

the proposed algorithm. 
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