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Abstract—Due to the considerable social and economic 

burden traffic accidents imposed on societies, strategies to 

reduce crash severity and potential for crash (frequency) 

are of interest to transportation agencies. As injury-severity 

data are generally represented by discrete categories such as 

injury and property damage only, a variety of discrete 

choice methodological techniques can be applied to analyze 

crash-severity data. This paper presents a binary model for 

predicting severity of Tehran urban car-car collisions which 

can be used in safety planning and enforcements. Human 

impact and collision type variables are employed to act as 

surrogates for point of impact. Results indicate that 

fastening seat belt decreases the probability of accidents 

resulting in injury. Furthermore, disregarding regulations, 

as a human reason of an accident, results in the most severe 

consequence (injury/fatality) compared to other human 

reasons. On the other extreme, as a consequence of 

accidents occurring due to non-human reasons, property 

damage only is the most probable outcome. Finally, drivers 

involved in front to front collision types are most prone to 

injury. Other factors in decreasing order are: front to rear, 

front to side, other types of collision, rear to side, and side to 

side.  
 

Index Terms—human factor impacts, crash severity, binary 

logit, car-car crash  

 

I. INTRODUCTION 

Strategies to reduce crash injury severity and crash 

frequency are of interest to transportation agencies 

because of the considerable social and economic burden 

traffic accidents impose on societies. These strategies, as 

how they approach the issue, can be categorized in two 

groups: strategies to lessen the potential for accidents (i.e. 

reducing crash frequency) and strategies to decrease the 

severity level of a crash. This paper deals with the 

severity side of strategies. 

According to the Global Status Report on Road Safety, 

nearly 1.3 million people are killed annually and between 

20 and 50 million people get injured every year around 

the globe in roadway crashes. The estimated cost of 

highway crashes to governments worldwide is estimated 

to be 518 billion US dollars [1]. 

In this respect, even worse conditions are confronted in 

developing countries. These countries, due to problems 

such as lack of proper safety actions in road infrastructure, 

vehicle design and lack of specialized human forces in 
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transport safety planning suffer from more accidents 

compared with developed countries [2]. 

Factors affecting accidents can be compiled of five 

broad categories: driver characteristics (including driver 

gender, age, restraint system use, alcohol consumption 

and drug use), vehicle characteristics (including vehicle 

type and vehicle age), roadway design and operational 

attributes (including roadway class, speed limit, types of 

intersection and traffic control device), environmental 

factors (including time of day and road surface condition), 

and crash characteristics representing the crash situation 

and events (including driver ejection, vehicle rolled over, 

air bag deployment, manners of collision and collision 

location) [3]. 

Injury-severity data are generally represented by 

discrete categories such as fatal injury or killed, 

incapacitating injury, non-incapacitating, possible injury, 

and property damage only. Hence, a variety of discrete 

choice methodological techniques have been applied to 

analyze crash-severity data: binary outcome models, 

ordered discrete outcome models, and unordered 

multinomial discrete outcome model. The statistical 

methods employed by researchers have primarily relied 

on the nature of the dependent variable and various 

methodological issues associated with the data [4]. 

This paper presents a binary outcome model for 

predicting severity of urban car-car collisions which can 

be used in safety planning and enforcements. We employ 

the human impact and collision type variables to act as 

surrogates for point of impact. In the final specification of 

model, statistically insignificant variables were removed. 

The overall process was guided by intuition, judgment 

and insights from previous literature. 

The paper structure is as follows: In the next section, a 

concise review on the research conducted on the issue is 

presented. The third section deals with the proposed 

methodology and the database. The analysis of results 

and model validation is presented in section 4. Finally, 

conclusions on the research are briefly discussed in the 

last section. 

II. LITERATURE 

Within the area of crash severity research, discrete 

outcome models have become the prevailing analytical 

technique. Such models allow for an examination of crash 

severity outcomes while treating injury level as either an 

ordinal or a nominal variable. Recent advances in 
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computational efficiency, as well as in the development 

and application of simulation methods that can be used to 

approximate integration, have allowed for the 

development of more flexible models that allow for new 

insights into those factors affecting severity outcomes [4]. 

Studies that have looked at binary injury-severity 

outcomes such as injury vs. non-injury crashes or fatal vs. 

non-fatal crashes have used common discrete outcome 

models such as the binary logit and binary probit models. 

However, because of the characteristics of crash injury 

data and the variety of methodological issues associated 

with these characteristics, a number of variations of the 

simple binary logit and probit have been employed [4]. 

Savolainen and Mannering used logit models for 

analyzing one and multi vehicle involving accidents and 

came to conclusion that factors such as age, type of 

accident, alcohol, wearing helmet, and speeding can 

affect accident severities [5]. 

Abay and colleagues contributed to the injury severity 

modeling literature by developing a multivariate probit 

model of injury severity and seat belt use decisions of 

both drivers involved in two-vehicle crashes. The 

modeling approach enables the joint modeling of the 

injury severity of multiple individuals involved in a crash, 

while also recognizing the endogeneity of seat belt use in 

predicting injury severity levels as well as 

accommodating unobserved heterogeneity in the effects 

of variables. The proposed model is applied to analyze 

the injury severity of drivers involved in two-vehicle road 

crashes in Denmark [6]. 

Yasmin and Eluru empirically compared the ordered 

response and unordered response models in the context of 

driver injury severity in traffic crashes. The alternative 

modeling approaches considered for the comparison 

exercise include: for the ordered response framework- 

ordered logit (OL), generalized ordered logit (GOL), and 

for the unordered response framework- multinomial logit 

(MNL), nested logit (NL), and ordered generalized 

extreme value logit (OGEV) model [3]. 

III. METHODOLOGY 

Accident prediction models are widely used to estimate 

the severity and/or frequency of accidents for a given 

spatial unit over a certain period of time [7]. One of the 

most important practical applications of these models 

aims to identify factors involved in accident severity and 

their underlying quantitative effect. 

Accidents are mutually exclusive events. In other 

words, an accident is in, and can only be in, one category 

of severities (i.e. injury or property damage only). Such 

data, involving two types of discrete outcomes (i.e. count 

and discrete choice), can be modeled using a discrete 

model like binary logit. 

A. Model Structure 

Binary logit models are based on observed choices 

made by individual units. To represent the attractiveness 

of the choices (alternatives), the concept of utility, which 

is a convenient theoretical construct defined as what the 

individual seeks to maximize, is used. Alternatives, per se, 

do not produce utility; this is derived from their 

characteristics and those of the individual. For example, 

the observable utility is usually defined as a linear 

combination of variables. 

Binary logit models have some useful properties: the 

explanatory variables included in the model can have 

explicitly estimated coefficients. Binary logit models 

allow for a flexible representation of the policy variables 

considered relevant to the study. The coefficients of the 

explanatory variables have a direct marginal utility 

interpretation (i.e. they reflect the relative importance of 

each attribute). The general form of utility function is as 

follows: 

 
 

  
 

  
 
                               (1) 

where: 

Vi: random utility of choice i (accident severity level i) 

Ui: deterministic component of i 

ei: random error term of i 

The utility of each alternative to a specific decision 

maker can be expressed as a function of the observed 

attributes of the alternatives and the observed 

characteristics of the decision maker. Once the 

distribution of the error term, ei, is specified, the 

distribution of the utilities can be determined, and the 

choice function can be calculated explicitly. 

Logit model, however, can be derived from the 

concepts of random utility and utility maximization by 

assuming that the random terms of each utility function 

are independently and identically distributed with a 

Gumbel (double exponential) distribution function [8, 9]. 

There are different kinds of Logit Models which 

depend on the utility function and number of deciding 

alternatives. In case of selecting among two choices, 

binary logit models can be applied for estimating the 

probability of selecting/happening each choice. The 

general structure of this model is as follows: 

(2)  

   
        

                 

 
 

            

 
 

         
 

 

(3)           (     )   

where: 

PA : probability of choice A 

UA : utility function of choice A 

UB : utility function of choice B 

X j : independent variable j 

a j : coefficient of independent variable j in UA 

b j : coefficient of independent variable j in UB 

The utility functions usually include a set of 

parameters that are statistically estimated from observed 

choices. For estimation of these models, the common 

method is Maximum Likelihood Estimation (MLE). 

Stated simply, a maximum likelihood estimator is the 

value of the parameters for which the observed sample is 

most likely to have occurred [10]. 
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B. Data 

A statistical sample was obtained from car-car crash 

reports in Tehran metropolitan area during 15 months 

(2009-2010). Table I shows the names of records and 

their respective descriptive statistics. As indicated, the 

data contain information about accident severity level 

(injury/fatality and property damage only), human 

impacts (fastening or not fastening seat belt, and human 

reasons of an accident), and collision types (direction of 

two colliding cars). 

TABLE I.  DESCRIPTIVE STATISTICS ANALYSIS OF DATA 

Name Frequency Relative 

frequency (%) 

Severity (injury) 335 17.7 

Severity (property damage only) 1559 82.3 

Seat belt (fastened) 1517 80.1 

Seat belt (not fastened) 377 19.9 

Human reason (disregarding 
regulations) 

324 17.1 

Human reason (driver in a hurry) 1080 57.0 

Human reason (no human 

reason) 
278 14.7 

Human reason (other human 

reasons) 
212 11.2 

Collision type (front to front) 161 8.5 

Collision type (front to rear) 647 34.2 

Collision type (front to side) 537 28.4 

Collision type (rear to side) 57 3.0 

Collision type (side to side) 270 14.3 

Collision type (other types) 222 11.7 

C. Model Variables 

The dependent variable (severity of accident) is a 

dichotomous variable with the value 0 for property 

damage only and 1 for injury. The independent variables 

account for human and accident impacts on accident 

severity (Table II). 

TABLE II.  INDEPENDENT VARIABLES OF THE MODEL 

Variable 

name 
Description Variable type 

SBT_yes Seat belt (fastened) Dummy (human) 

HUR_hurry Human reason (hurry) Dummy (human) 

HUR_no Human reason (no human 
reason) 

Dummy (human) 

HUR_else Human reason (else) Dummy (human) 

COLL_FR Collision type (Front to 

Rear) 
Dummy (accident) 

COLL_FS Collision type (Front to 

Side) 
Dummy (accident) 

COLL_RS Collision type (Rear to Side) Dummy (accident) 

COLL_SS Collision type (Side to Side) Dummy (accident) 

COLL_else Collision type (else) Dummy (accident) 

IV. RESULTS 

Table III shows the results of modeling severity of 

accidents in Tehran metropolitan area. The contribution 

of each variable to accident severity is as follows. 

1) Seat belt 

As expected, fastening seat belt (SBT_yes), compared 

to not fastening it, decreases the probability of an 

accident resulting in injury with a negative coefficient of 

-0.43535. 

2) Human reason 

The human reasons with decreasing impact on human 

injury are HUR_hurry, HUR_else, and disregarding 

regulations. Whereas, the non-human reason has the 

highest impact on reducing human injury. 

3) Collision type 

Model results indicate that drivers involved in front to 

front collision types are most prone to injury. Other 

factors in decreasing order are: front to rear, front to side, 

other types of collision, rear to side, and side to side. 

TABLE III.  BINARY LOGIT MODEL RESULTS OF ACCIDENT SEVERITY 

Var Coef Std error t-stat 

SBT_yes -0.43535 0.12687 -3.432* 

HUR_hurry -0.94878 0.13143 -7.219* 

HUR_no -1.48463 0.23183 -6.404* 

HUR_else -0.39352 0.19195 -2.050* 

COLL_FR -0.30809 0.15530 -1.984* 

COLL_FS -0.32197 0.16127 -1.996* 

COLL_RS -0.91152 0.40014 -2.278* 

COLL_SS -1.33904 0.24173 -5.539* 

COLL_else -0.55668 0.22370 -2.489* 

*   Significance at %5 
** Property damage only is base choice (severity level)  

 

The Log Likelihood (LL) functions of the estimated 

model and the two base models are calculated below. As 

seen, the estimated model improves the LL function. 

Moreover, model fit is examined by pseudo-R
2
 which 

shows a relatively good fit of the model. 

               
              

 
               

 

     
      

  

 

   
      

 
  

    
      

      
      

 

To determine whether the model is statistically 

significant, the LL function of the estimated model 

should be compared to that of the base model. The test to 

compare the LL functions is called the LL ratio test 

(Equation 4). If the -2LL value exceeds the critical 

Chi-square value, the null hypothesis that the specified 

model is no better than the base comparison model is 

rejected [11], [12]. 
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where: 

n: total observations 

Oi: real observations 

  : predicted value (Expected) 

The LL ratio test executed in Nlogit software package, 

indicates a p-value of 0.0000000 which confirms the 

overall model significance. Table IV shows the cross 

tabulation of predicted severity levels (estimated by the 

proposed model) and the corresponding observed (real) 

data. Results indicate a percent correct value of 72, which 

means that 72 percent of the observations are correctly 

replicated (a rather good value for such a model). 

TABLE IV.  COMPARISON OF MODEL RESULTS AND OBSERVATIONS 

Predicted 

Observed 
0 1 Sum 

0 1291 267 1559 

1 262 72 335 

Sum 1554 339 1894 

 

Table V indicates the marginal effect and elasticity of 

the variables. As seen, the variables with the highest and 

the lowest marginal effect are HUR_no (no human reason) 

and COLL_FR (Front to Rear collision), respectively. 

Also, the results of elasticity analysis of variables show 

that accident severity is inelastic to almost all 

independent variables with HUR_hurry (hurry as the 

crash human reason) and COLL_RS (Rear to Side 

collision) as the most and least elasticity, respectively. 

TABLE V.  MARGINAL EFFECT AND ELASTICITY OF VARIABLES 

Variable Marginal Effect Elasticity 

SBT_yes -0.06495 -0.31802 

HUR_hurry -0.13636 -0.47532 

HUR_no -0.14340 -0.12866 

HUR_else -0.04852 -0.03320 

COLL_FR -0.04081 -0.08523 

COLL_FS -0.04205 -0.07288 

COLL_RS -0.09262 -0.01704 

COLL_SS -0.13299 -0.11589 

COLL_else -0.06585 -0.04718 

V. CONCLUSIONS 

Strategies to reduce crash injury severity and crash 

frequency are of interest to transportation agencies 

because of the considerable social and economic burden 

traffic accidents impose on societies. These strategies, as 

how they approach the issue, can be categorized in two 

groups: strategies to lessen the potential for accidents (i.e. 

reducing crash frequency) and strategies to decrease the 

severity level of a crash. This paper deals with the 

severity side of strategies. As injury-severity data are 

generally represented by discrete categories such as 

injury and property damage only, a variety of discrete 

choice methodological techniques can be applied to 

analyze crash-severity data. This paper presents a binary 

outcome model for predicting severity of Tehran urban 

car-car collisions. 

Results indicate that, as expected, fastening seat belt, 

compared to not fastening it, decreases the probability of 

an accident resulting in injury. Furthermore, disregarding 

regulations, as a human reason of an accident, results in 

the most severe consequence (injury/fatality) compared to 

other human reasons. On the other extreme, as a 

consequence of accidents occurring due to non-human 

reasons, property damage only is the most probable 

outcome. Finally, the model shows that drivers involved 

in front to front collision types are most prone to injury. 

Suggestions for further research can be as follows: 

Considering the dependent variable in 3 values 

(fatal/injury/property damage only) by using MNL 

models. Another suggestion can be simultaneous 

modeling of crash severity and frequency. 
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