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Abstract—This paper addresses the problem of finding an 

optimal assignment of duties to bus crews in a given time 

horizon, in such a way that the total workload should be 

evenly distributed. This problem is known as the balanced 

bus crew rostering problem. We first formulate it as an 

equivalent multi-level balanced assignment problem. Then, 

a genetic algorithm (GA) approach is proposed to solve this 

problem. A numerical example is used to illustrate the 

application of the approach. Finally, we compare the 

implementation results generated by the GA approach with 

the results generated by an algorithm proposed by 

Carraresi and Gallo (1984) and another heuristic algorithm 

proposed by Ceder (2007). The results indicate that the GA 

approach has a better computational performance, and can 

generate more balanced bus crew rosters as well as fewer 

rosters. This demonstrates that the GA approach is a good 

alternative to the balanced bus crew rostering problem. To 

better understand the performance of the algorithm, 

sensitivity analyses of relevant parameters are presented at 

the end of the paper.  

 

Index Terms—public transport, balanced bus crew rostering 

problem, multi-level balanced assignment problem, genetic 

algorithm, sensitivity analysis 

 

I. INTRODUCTION 

Generally speaking, the transit-operation planning 

process consists of four basic components performed in 

sequence: (ⅰ) network route design; (ⅱ) timetable 

development; (ⅲ) vehicle scheduling; (ⅳ) crew 

scheduling [1]. Because the whole integrated planning 

process is extremely difficult, the four elements are 

usually dealt with separately when it comes into practice. 

Taking the outcome of former component as the input of 

the next component, the whole planning process then can 

be fulfilled in sequence. In the components described 

above, the bus crew rostering, a sub-problem of the bus 

crew scheduling, is a critical part of the planning activity, 

because a fair and reasonable crew rostering scheme 

plays a considerably important role in arousing bus 

crews’ enthusiasm and improving their work efficiency as 

well as saving a large amount of costs for public-transport 

(PT) agencies.  

The bus crew scheduling problem (BCSP) is the 

problem of generating and selecting a set of feasible daily 

duties (a.k.a., shifts, workdays or runs) to bus crews so 
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that all vehicle blocks or trips can be covered. It includes 

two sub-problems: (1) duty generation; (2) duty 

assignment. The bus crew rostering problem (BCRP) 

consists in assigning bus crews to the daily duties 

complying with some constraints during a planning 

period of a given duration, e.g., a month. Generally, those 

constraints include: (1) the minimum number of rest 

hours required between two consecutive working days; (2) 

the maximum allowed roster hours for each roster type; 

(3) the maximum working hours per day, etc. The results 

of the crew assignment, on the one hand, should 

guarantee that all duties are covered, on the other hand 

can achieve some objectives, such as evenly distribute 

total workload, evenly distribute duties, minimize 

maximum roster duration, minimize the sum of roster 

costs [1], [2]. Usually different PT agencies have 

different goals. The balanced bus crew rostering problem 

(BBCRP) means that the total workload should be evenly 

distributed among bus crews. Because balanced bus crew 

rosters can significantly reduce unfairness and unfitness 

for bus drivers, the balanced bus crew rostering scheme is 

favored by bus crews.  
In this paper, we focus on dealing with the BBCRP. 

We first formulate it as an equivalent multi-level 

balanced assignment problem, which is similar to the one 

in [3]. Then a genetic algorithm (GA)-based approach is 

designed to solve it. GA emulates the evolution theory of 

nature and is a well established heuristic method. It is a 

global search heuristic technique used to find accurate or 

approximate solutions to optimization problems [4]. More 

importantly, it is very simple and powerful without 

carefully considering restrictive assumptions about the 

search space. It has been widely used in transportation 

engineering [5]-[9]. However, parameters of GA have 

significant effects on its performance. How to choose the 

value of parameters is an important issue when using GA 

to solve optimization problems. To avoid blindly setting 

parameters of the algorithm, sensitivity analyses of these 

parameters are discussed in depth in the research.  
The rest of this paper is organized as follows. In 

Section 2, the literature review about the methodology of 

bus crew rostering is presented. Section 3 introduces the 

BBCRP and then presents the mathematical model 

formulation. Section 4 presents the designed GA-based 

approach. Section 5 provides a numerical example to 

illustrate the application of the proposed method and also 

compare its implementation results with the results 
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generated by other two heuristic algorithms. Parameter 

sensitivity analyses of the designed solution algorithm are 

also given in Section 5. Finally, conclusions can be found 

in Section 6 together with some recommendations for 

further studies.  

II. REVIEW OF BUS CREW ROSTERING 

METHODOLOGIES 

Because the BCRP involves too many factors, such as 

labor laws, labor agreements, transit company rules, it is 

one of the most time-consuming and cumbersome tasks 

in PT operation. Up to now, a considerable number of 

researchers have focused their studies on it. Early detailed 

reviews on staff scheduling and rostering can be found in 

[10], [11]. In the literature, crew rostering problems are 

classified into several specific areas, such as 

transportation systems, call centers, health care systems, 

and protection and emergency services. Models and 

solution techniques used mainly include: mathematical 

programming, constraint programming, heuristics, meta-

heuristics, and artificial intelligence. 

The BCRP is usually formulated as different 

mathematical models with different objectives. Carraresi 

and Gallo [3] first formulated it as a multi-level 

bottleneck assignment (MBA) problem. They proved it 

was NP-complete and proposed a stable solution for 

MBA (SSMBA) algorithm by iteratively solving a 

bottleneck assignment sub-problem in order to get a 

stable asymptotically optimal solution. Bianco et al. [12] 

adopted a similar formulation and proposed a heuristic 

MBA (HMBA) algorithm. Computational results showed 

that HMBA outperforms SSMBA in terms of the distance 

from optimality, but requires a longer computation time. 

However, they just simply assumed that the duties were 

qualified for all crews and failed to consider the 

qualification of crews. This makes the results cannot be 

directly put into practice. Among other relevant 

approaches, Catanas and Paixao [13], Caprara et al. [14], 

Sodhi and Norris [15] formulated the BCRP based on a 

set covering or partitioning model. Lagrangian relaxation 

and decomposition are usually employed to improve the 

lower bound of solutions. Cappanera and Gallo [16] 

formulated the problem as a 0-1 multi-commodity flow 

problem and solved it with CPLEX. Moz et al. [17] 

considered the non-cyclic rostering context and 

formulated the problem as a bi-objective mathematical 

model and two evolutionary heuristics were designed to 

solve it. Mesquita et al. [18] proposed a binary non-linear 

multi-objective mathematical formulation to integrate the 

vehicle and crew rostering problems. Their methods can 

consider both PT agency’s interests and driver’s 

preferences. Aringhieri et al. [19] discussed the problem 

of determining a balanced rostering for drivers with 

limited skills, and three alternative formulations and 

solution algorithms for the problem were proposed. 

Actually, their heuristic algorithms were based on [3]. 

Although some valuable mathematical models and 

solution algorithms have been proposed for the BCRP, to 

the best of our knowledge, little attention has been paid to 

BBCRP. Since good bus crew rostering scheme is very 

important for both bus crews and PT agencies, it is very 

necessary to formulate more practical mathematical 

models and develop more efficient solution algorithms. 

III. PROBLEM DESCRIPTION AND MATHEMATICAL 

FORMULATION 

After crew duties are generated, PT operators assign 

these duties to bus crews in a set of predefined patterns 

for a specified time horizon, e.g., a month. Each pattern is 

called as a roster, which covers a set of duties over an 

amount of consecutive days. The length in time of each 

roster is the sum of the length in time of all the duties it 

contains. Rosters then repeat themselves and crews shift 

between each roster in the future. Generally speaking, bus 

crews expect that the length of each roster is almost the 

same so that they will feel fair and there is also no 

unfitness when they transfer from one roster to another. 

Before giving the mathematical formulation of the 

BBCRP, some definitions are introduced first. Given a 

time horizon of | |I  days, for each day | |J  duties are 

generated. Let black nodes denote real duties and white 

nodes denote dummy duties. Let 
i

jd  denotes the thj   

duty of day i , and the weight of the corresponding node 

is 
i

jt , which equals to the length in time of the thj   

duty of day i . A feasible crew assignment to a single 

crew corresponds to a path from one of the nodes in the 

first node set to one of the nodes in the | | thI   node set. 

Its total workload (length in time) is given by the sum of 

the weights of all the nodes in the path. The problem can 

be illustrated as a weighted multi-level graph shown in 

Fig. 1. The BBCRP can be described as the problem of 

finding | |J  disjoint paths from the first node set to the 

last one such that all paths have almost the same length as 

well as all nodes are linked. 
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Figure 1.  A weighted multi-level graph illustrating the BBCRP. 

This problem is known as the MBA problem. What is 

more, taking into consideration of the legality of duties 

and the qualification of bus crews, the proposed 

mathematical model for the BBCRP can be given as 

follows: 

Minimize:

2
| | | |

| |, | |,

1 1

1 1

| | 1 | |

J J

I j I j

j j

l l
J J


 

 
  

  
 

Subject to: 
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1, 1,j jl t                       (1)j J                    (2) 

, , 1, 1, ,i j i j i j i j kl t t x   ,( ), ( ), , i jj J i k K i i I t t     (3) 

, ,

( 1)

1i j k

k K i

x
 

           ( ),j J i i I                (4) 

              , ,

( )

1i j k

j J i

x


           ( 1),k K i i I                (5) 

         
, , 0 or 1i j kx        ( ), ( ),j J i k K i i I            (6) 

where 
, ,i j kx =1 if duty k  of day 1i   can be assigned to a 

bus crew who is qualified to perform duty j  of day i , 0 

if not. Let 
, , =[ ], ( ), ( ),i j kTabu List x j J i k K i i I     

denotes the set of unfeasible links, which means that duty 

k  of day 1i   cannot be assigned to the crews who 

perform duty j  of day i . Let t  denotes the time length 

distribution matrix. Let 
,i jl denotes the total workload 

from day 1 to day i  of the crew performing duty j  of 

day i . Clearly the total workload for a crew in a given 

time horizon is 
| |,I jl . I  and  | |J i represent the number 

of rostering days and the number of duties of day i , 

respectively. The standard deviation of the length of all 

the   | 1| | iJ i   rosters is denoted by  . 

Our goal is to generate balanced rosters, which means 

minimizing  . Carraresi and Gallo [3] presented a 

similar mathematical formulation, but their objective is to 

minimize the length of the longest roster, hoping through 

this way to obtain balanced rosters. They also formulated 

it as an MBA problem and proved that it was NP-

complete, and proposed an asymptotically optimal 

algorithm for it. However, the algorithm cannot guarantee 

that all rosters have the same length and it also fail to 

consider the legality of duties and bus crews’ 

qualification for duties. In the next section, we will 

introduce a GA-based approach to solve the above 

mathematical model, which can take into account the 

preference and qualification of bus crews. 

IV. PROPOSED GA APPROACH 

In this section, we introduce a GA approach to solve 

the proposed mathematical model. After the generation of 

balanced rosters, bus crews can shift between every two 

rosters, thus balanced bus crew rostering goal can be 

achieved. 

The entire designed GA approach to the BBCRP is 

outlined in sequence as follows. 

 Step 1: Initialization 

1) Encoding scheme 

Real coded scheme is adopted, because it can show 

characteristics of individuals directly. Each chromosome 

has | |I  sections corresponding to the | |I  levels of the 

weighted multi-level graph, and each section has | |J  

genes, a permutation of array [1 2 … | |J ], which 

represents a possible link between two adjacent node sets 

of the weighted multi-level graph. The total number of 

genes of a chromosome is | | | |I J . A simple illustration 

of the encoding scheme is shown in Fig. 2. 
 

 

1 2 … | |I
 

1 2 … | |J  1 2 … | |J  1 2 … | |J  1 2 … | |J  

Figure 2. An illustration of the chromosome encoding scheme. 

2) Define the GA parameters 

This process is about the definition of some important 

parameters of the GA, which mainly includes the time 

length distribution matrix: t , the population size: sizepop, 

the crossover probability: pcross, the mutation probability: 

pmutation, and the maximum iteration number: maxgen. 

3) Generate an initial population 

According to our encoding scheme, the total number of 

populations is | |(| | !) IJ . At beginning, a feasible solution 

is randomly generated as the initial population. 

Step 2: Fitness Evaluation 

The fitness function is defined based on the objective 

function  . According to it, the fitness value iF
 
of each 

chromosome can be calculated as the following equation. 

1
i

i

F


                                  (7) 

where i  is the standard variation defined in equation (1). 

Step 3: Selection 

This step is about selecting individuals from the 

current population as individuals of the next generation 

based on their fitness value. The probability ip  of the 

selection of each individual is defined as follows. 

1

i

i N

i

i

F
p

F





                             (8) 

where iF  is the fitness value of individual i , and N  is 

the number of total populations. Obviously we have 

1

1
N

i

i

p


 . We do the selection process using the roulette 

method. First, we randomly generate  0,1sp  , if 

i sF p , then individual i  is chosen as an individual of 

the next generation. Then repeat N  times and generate 

N  individuals as the next population. 
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Step 4: Crossover 

After two parent chromosomes are selected in step 3, 

two new children chromosomes are then generated by 

using a crossover operator. The operator means that when 

the operator condition is satisfied, one part of a 

chromosome, corresponding to one possible link between 

two adjacent duties, is chosen as crossover with another 

chromosome. A simple illustration of the crossover 

operator is shown in Fig. 3.  
 

2 3 1 4 1 3 2 4 3 1 2 4 

 

1 2 3 4 2 1 3 4 3 2 1 4 

 
 

 

2 3 1 4 2 1 3 4 3 1 2 4 

 

1 2 3 4 1 3 2 4 3 2 1 4 

 

Figure 3.  An illustration of the crossover operator. 

The crossover operator process is finished in this way.  

First, a real number  0,1cp  is randomly generated. If 

the predefined crossover probability: pcross
cp , then do 

the crossover process, and do nothing otherwise. 

Step 5: Mutation 

Mutation operator is adopted to avoid being trapped in 

local optimal and to further improve the optimization 

results generated in step 4. In this step, first randomly 

choose a chromosome. Then randomly generate a real 

number  0,1mp  , if the predefined mutation probability: 

pmutation
mp , then two genes in the same section of a 

chromosome randomly exchange their position. A simple 

illustration of the mutation operator is shown in Fig. 4. 
 

2 3 1 4 2 1 3 4 3 1 2 4 

 
 

 

2 3 1 4 2 3 1 4 3 1 2 4 

Figure 4. An illustration of the mutation operator. 

Step 6: Termination 

If the iteration number   reaches the maximum 

iteration number: maxgen, then the individual with the 

highest fitness value is regarded as the optimal solution of 

the problem. Otherwise set 1   and return to step 2. 

It should be noted that, in solving the BBCRP with 

consideration of crews’ qualification of duties, the result 

generated by the GA approach may contain elements that 

belong to the  =[ ], ( ), ( ),ijkTabu List x j J i k K i i I    , 

which means that the solution is unfeasible. To overcome 

this problem, considering the number of elements in the 

Tabu List is very small and the probability of 

encountering such kind of unfeasible solution is not big 

and also the designed GA is very simple and fast, we just 

implement the GA once more until generating a feasible 

solution and take it as a final optimal solution. 

V. COMPUTATIONAL RESULTS 

In this section, we discuss the GA implementation and 

parameters sensitivity analyses. First, a simple bus crew 

rostering problem is given. Then, we present the GA 

implementation results and compare them with the results 

generated by an algorithm proposed by Carraresi and 

Gallo (1984) and another heuristic algorithm proposed by 

Ceder (2007). At last, parameter sensitivity analyses of 

GA, including the population size, crossover probability, 

and mutation probability, are presented. 

A. A Numerical Example 

To illustrate the performance of the proposed GA 

approach and compare it with the SSMBA algorithm and 

Ceder’s method, a simple bus crew rostering example 

used by Ceder (2007) is adopted in this research. The 

duty distribution of the example is shown in TableⅠand 

the parameters of each duty are shown in Table Ⅱ. In this 

case, 10-hours is the minimum rest period required 

between two consecutive working days, which means that 

link [ 1

4d --- 2

1d ] and link [ 4

4d --- 5

1d ] are unfeasible links, 

thus 
141 4410;  0x x 

 
and the 

141 441 =[ , ]Tabu List x x . 

TABLE I.  INPUT DATA FOR THE EXAMPLE PROBLEM. 

 Mon. Tue. Wed. Thur. Fri. Sat. Sun. 

 

 

Duty 
distribution 

 
 

1

1d  
2

1d  
3

1d  --- 5

1d  
6

1d  --- 

1

2d  
2

2d  
3

2d  
4

2d  
5

2d  --- --- 

--- 2

3d  
3

3d  
4

3d  
5

3d  
6

3d  --- 

1

4d  --- 3

4d  
4

4d  --- --- 7

4d  

TABLE II.  DUTY PARAMETERS OF THE EXAMPLE PROBLEM. 

Duty for day i , 1,2,3,4i 
 

Start and end time Duty length (hours)  jL h  

1

id  6:00-16:00 10 

2

id  12:00-20:00 8 

3

id  16:00-23:00 7 

4

id  18:00-24:00 6 

Crossover 

Parent 1 

Parent 2 

Offspring 1 

Offspring 2 

 

Mutation 
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For this test example, we set the parameters of GA as 

follows. 

Time length distribution matrix: 

101010010100

8 8 8 8 8 0 0

0 7 7 7 7 7 0

6 0 6 6 0 0 6

 
 
 
 
 
 

t ; 

Population size: sizepop=50; 

Crossover probability: pcross=0.95; 

Mutation probability: pmutation=0.05; 

Maximum iteration number: maxgen=100. 

The iteration results of each step of the GA are shown 

in Fig. 5. From it, we can see the GA performs very well 

and can converge to one of the optimal solutions with 

 =0.5 and the lengths in time of each roster are 37h, 37h, 

37h, 38h, respectively. One of the best chromosomes is 

[431212343142123424313412]. The corresponding links 

of each roster are shown in Fig. 6. 
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Figure 5.  The minimum and average standard variations of the length 
of all rosters in each iteration. 
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Figure 6.  Network structure of the solution generated by GA. 

It should be noted that the optimal solution is not 

unique in this example problem. For example, another 

chromosome [321423144132421334212431] is also an 
optimal solution. Although another chromosome 

[132414323214423124131342] seems to be also another 

optimal solution, however, it is unfeasible, because this 

solution includes element 441 1x  that is against the 

141 441 =[ , ]Tabu List x x . Therefore, to this example, it is 

not a feasible solution and should be abandoned. In fact, 
what we need to do is just finding one feasible and 

optimal solution for bus crews and other optimal 

solutions can be just discarded. 
We also compare the results generated by using the GA 

approach and the methods used by Carraresi and Gallo 

(1984) and Ceder (2007). The final crew rostering results 

generated by using SSMBA algorithm and Ceder’s 

method are show in Fig. 7 and Fig. 8, respectively. A 

detail comparison of the three approaches, including the 

minimum length in time of rosters  minl h , the maximum 

length in time of rosters  maxl h , the standard variation of 

the length of all rosters 
 

and the number of rosters 

needed N , are shown in Table Ⅲ. 

It can be seen that the proposed GA approach have the 

ability of generating more balanced rosters compared to 

the SSMBA and Ceder’s method. In addition, it generates 

fewer rosters than Ceder’s method and the same as the 

SSMBA. Therefore, it can conclude that the GA approach 

has the best performance and is a good alternative to the 

balanced bus crew rostering problem. 
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Figure 7.  Network structure of the solution generated by SSMBA. 
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Figure 8.  Network structure of the solution generated by Ceder. 

TABLE III.  COMPARISON OF THE RESULTS OF THE THREE 

APPROACHES. 

Algorithm 
 minl h   maxl h    N  

GA 37 38 0.50 4 

SSMBA 34 40 2.50 4 

Ceder 13 43 14.34 5 

B. Parameters Sensitivity Analyses 

To better understand the performance of the GA 

approach, sensitivity analyses of relevant parameters are 

further discussed. For the given simple example, we set 

the benchmark of the population size sizepop=50, 

crossover probability pcross=0.95 and mutation 

probability pmutation=0.05, other parameter setting see 

Table II and Table II. In this section, we analyze the 

variations of these parameters and their impacts on the 

performance of the GA approach. 

First, the crossover probability pcross=0.95 and 

mutation probability pmutation=0.05 are fixed. 

Population size varies in the field of sizepop [1 80]. 

Under this kind of settings, the best value of   and the 
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implementation time time (s) of each population size are 

shown in Fig. 9. From it, we can see the optimal value of 

  in each iteration is sensitive to the population size. 

When the population size is 21, 40, 42, 56, 61, 73 or 75, 

the algorithm can converge to a solution near the optimal 

solution. On the other hand, with the incensement of the 

population size, the implementation time also increase. 

Therefore, to balance the convergence level and 

implementation time, we can set the population size as 21, 

40, 42 or 56 for this example. 
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Figure 9.  Results of the GA approach under different population sizes. 

Second, the population size sizepop=50, the mutation 

probability pmutation=0.05 are fixed and the crossover 

probability varies in the field of pcross [0.85 0.99]. The 

optimal value of   and the implementation time time (s) 

are shown in Fig. 10. From it we can see the crossover 

probability does clearly affect the optimal solution and 

the result is sensitive to the crossover probability. When 

it is 0.97, the result converges to the optimal solution. On 

the other hand the implementation time, however, does 

not clearly increase with the incensement of the crossover 

probability, except when it is in 0.85 and 0.96. Therefore, 

the crossover probability can be set as 0.97 for this 

example. 
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Figure 10. Results of the GA approach under different crossover 

probabilities. 

At last, the population size sizepop=50, the crossover 

probability pcross=0.95 are fixed and the mutation 

probability varies in the field of pmutation= [0.01 0.2]. 

The optimal value of   and the implementation time 

time (s) are shown in Fig. 11. 

From Fig. 11, we can see the result of GA is sensitive 

to the mutation probability. Only when it is 0.06 and 0.18, 

the solution can converge to the optimal solutions. The 

implementation time time (s) is kept on about 0.5 seconds 

except when the mutation probability is 0.01. Therefore, 

for this example, it can set the mutation probability 

pmutation=0.06 or 0.18. 
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Figure 11.  Results of the GA approach under different mutation probabilities. 

VI. CONCLUSIONS AND DISCUSSIONS 

This paper presents an equivalent MBA mathematical 

model for the BBCRP. A GA approach that can take into 

account the legality of duties and bus crews’ individual 

qualifications is proposed to solve it. We compare the 

results generated by this approach with the results 

generated by the SSMBA and Ceder’s approach using a 

numerical bus crew rostering example. It suggests that the 

proposed GA approach can generate the most balanced 

bus crew rosters as well as fewer rosters, and has the best 

performance among the three approaches. We also 

analyze the characteristics of parameters of the GA when 
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using it to solve the BBCRP and present relevant rules to 

set them. The computational results show that the 

parameters of the GA for the test example can be set as 

follows: the population size can be set as 21, 40, 42, 56, 

61, 73 or 75, the crossover probability can be set as 0.97, 

and the mutation probability can be set as 0.06 or 0.18. 

As a future research topic, the following points can be 

considered. 

 It would be worthwhile to investigate how the 

results could be further extended so that they can 

be applied to large-scale bus crew rostering 

problems. 

 How to integrate bus crew scheduling problem and 

bus crew rostering problem, which means 

designing integrated models and solution 

algorithms to solve the two problems 

simultaneously, is also can be investigated. 

 Except GA, other more efficient artificial 

intelligence techniques and meta-heuristics, such 

as simulated annealing, ant colony algorithm, tabu 

search, particle swarm optimization also can be 

analyzed to solve the BBCRP. 

It can be concluded that the proposed GA approach 

performs well and can be further incorporated in the 

current computer-aided public-transport scheduling 

systems. 
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