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Abstract—The vehicle routing problem (VRP) concerns the 

transport of items between depots and customers by means 

of a fleet of vehicles. The capacitated vehicle routing 

problem (CVRP) is the basic version of the VRP. A 

columnar competitive model (CCM) of neural networks 

incorporates with a winner-take-all learning rule is 

employed to solve the CVRP. Stability condition of CCM for 

CVRP is exploited by mathematical analysis. Parameters 

settings of the network for guaranteeing the network 

converges to valid solutions are discussed in detail. 

Simulations are carried out to illustrate the performance of 

the columnar competitive model. 

 

Index Terms—columnar competitive model (CCM), 

capacitated vehicle routing problem (CVRP), winner-take-

all 

 

I. INTRODUCTION 

The vehicle routing problem (VRP) concerns the 

transport of items between depots and customers by 

means of a fleet of vehicles. Examples of VRPs are: mail 

delivery, school bus routing, solid waste collection, milk 

delivery, dial-a-ride systems, heating oil distribution, 

parcel pick-up and delivery, and many others. 

Finding optimal routes for a fleet of vehicles 

performing assigned tasks on a number of spatially 

distributed customers can be formulated as a 

combinatorial optimization problem: the vehicle routing 

problem. A solution of this problem is the best route 

serving all customers using a fleet of vehicles, respecting 

all operational constraints, such as vehicle capacity and 

the driver’s maximum working time, and minimizing the 

total transportation cost. 

The capacitated vehicle routing problem (CVRP) is the 

basic version of the VRP. The name derives from the 

constraint of having vehicles with limited capacity. 

Customer demands are deterministic and known in 

advance. Deliveries cannot be split, that is, an order 

cannot be served using two or more vehicles. The vehicle 

fleet is homogeneous and there is only one depot. The 

objective is to minimize the total travel cost, usually 

expressed as the traveled distance required to serve all 

customers. The CVRP is NP-hard [1] and the size of the 

problems which can be solved exactly in a reasonable 

time is up to 50 customers, using the branch-and-bound, 

branch-and-cut, and set-covering approaches. 

                                                           
  

II. THE MATHEMATICAL MODEL OF CVRP 

In general, (CVRP) meets the following requirements: 

 Customers locate in distribution area, and a single 

customer demand is less than the capacity of one 

vehicle. 

 Each customer can get the timely delivery service, 

and each customer is only visited by one vehicle 

only one time. 

 Every vehicle can only service one route, the 

distribution vehicle is initial and terminated in 

only one depot. 

 On each distribution lines, the total demand of 

each customer is no more than the capacity of one 

vehicle. 

The depot position, the customer position and road 

conditions are known. The considered costs include the 

running costs of the vehicles and time, distance and 

related expenses. In full considering the requirements of 

the CVRP and optimized object, the mathematical model 

of CVRP is established. 

CVRP assume that there is one depot and n customers. 

The depot is numbered 0 and customer is numbered 1, 

2…, n. The transportation cost between i customer and j 

customer is ijd . The demand of i customer is iq and the 

maximum load of the vehicles is T. The number of 

vehicle is m. 

First, the following variables are defined: 
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Equation (4), (5) and (6) guarantee that each customer 

is only visited by one vehicle only one time; Equation (7) 

ensures that the total demand of each customer is no more 

than the capacity of one vehicle on each distribution lines; 

Equation (8) guarantees the distribution vehicle is initial 

and terminated in only one depot. 

III. THE HOPFIELD NEURAL NETWORKS AND 

COLUMNAR COMPETITIVE MODEL (CCM) 

A Hopfield network is a form of recurrent artificial 

neural network invented by John Hopfield. Hopfield nets 

serve as content-addressable memory systems with binary 

threshold nodes. They are guaranteed to converge to a 

local minimum, but convergence to a false pattern (wrong 

local minimum) rather than the stored pattern (expected 

local minimum) can occur. 

There has been an increasing interest in applying the 

Hopfield neural networks to combinatorial optimization 

problems, since the original work of Hopfield and Tank 

[2]. Several methods have been proposed to ensure the 

network converges to valid states. Aiyer et al. [3] have 

theoretically explained the dynamics of network for 

traveling salesman problems by analyzing the eigen 

values of   the connection matrix. Abe [4] has shown the 

theoretical relationship between network parameters and 

solution quality based on the stability conditions of 

feasible solutions. Chaotic neural network provides 

another promising approach to solve those problems due 

to its global search ability and remarkable improvement 

with less local minima, see in [5]–[8]. Peng et al. [9] 

suggested the local minimum escape (LME) algorithm, 

which improves the local minimum of CHN by 

combining the network disturbing technique with the 

Hopfield network’s local minimum searching property. 

Otherwise, many papers have discussed efficient mapping 

approaches. Talavan and Yanez [10] presented a 

procedure for parameters settings based on the stability 

conditions of the network. Cooper et al. [11] developed 

the higher-order neural networks (HONN) to solve TSP 

and study the stability conditions of valid solutions. 

Brandt et al. [12] presented a modified Lyapunov 

function for mapping the TSP problem. All of those 

works are noteworthy for the solving of TSP. 

To solve CVRP efficiently, a new neural network is 

employed, which has a similar structure as Hopfield 

network, but it obeys a different updating rule: the 

columnar competitive model (CCM), which incorporates 

winner-takes-all (WTA) in column-wise. 

Competitive learning by winner-takes-all (WTA) has 

been recognized to play an important role in many areas 

of computational neural networks, such as feature 

13

Nevertheless, the potential of WTA as a means of 

eliminating all spurious states is seen due to its intrinsic 

competitive nature that can elegantly reduce the number 

of penalty terms, and hence the constraints of the network 

for optimization. The WTA mechanism can be described 

as: given a set of n neurons, the input to each neuron is 

calculated and the neuron with the maximum input value 

is declared the winner. The winner’s output is set to ‘1’ 

while the remaining neurons will have their values set to 

‘0’. 

In the work of Hopfield [1],  the form of an energy 

function is  

ViWVVE TbT )(
2

1
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It can be minimized by the continuous-time neural 

network with the parameters: nnjiWW  )( , is the 

connection matrix, n is the number of neurons, 

nnixVV  )( ,  represents the output sate of the neuron (x, 

i), and 
bi  is the vector form of bias. 

The energy function of CCM for CVRP can be written 
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where A > 0, B > 0 are scaling parameters, xyd  is the 

distance between customer  x and y, 
m

n
S 


is the 

average number of customers for m tours, iS is the 

number of cities that have been visited by vehicle i.  

Let im (i = 1,. . . , m-1) be the index of the virtual 

customer in the whole customer’s sequence which 

composed by m vehicle’s  tour concatenated end by end, 

and set 00 m , 1 mnmm , n is the total number 

of customers. 

Comparing (9) with (10), the connection matrix and 

input basis are computed as 
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Then the input to neuron (x, i) is calculated as 
b
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The columnar competitive model based on winner-

take-all (WTA) leaning rule, the neurons compete with 

others in each column, and the winner is with the largest 

input. The updating rule of outputs is given by 
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For CCM, ixv ,  is updated by the above WTA rule. 

The whole algorithm is summarized as follows: 
 

The CCM algorithm 

1  Initialize the network, with each neuron having 

a small 

initial value ixv , . A small random noise is 

added to 

break the initial network symmetry. Compute 

the W 

matrix ; 

2 Select a column (e.g., the first column). 

Compute the 

input ixNet ,  of each neuron in that column; 

3  Apply WTA , and update the output state of 

the neurons in that column.; 

4 Go to the next column, preferably the one 

immediately 

on the right for the convenience of 

computation. Repeat step 3 until the last column 

in the network is done. This constitutes the first 

epoch. 

5 Go to step 2 until the network converges (i.e., 

the states of the network stop changes). 

IV. THE PARAMETERS SETTINGS FOR THE CCM WHEN 

IT BE APPLIED TO CVRP 

For the energy function of   CCM, the critical value of 

the penalty-term scaling parameter A and B play a 

predominant role in ensuring its convergence and driving 

the network to converge to valid states.  

Consider the p-column of neuron outputs states matrix, 

suppose row b is an all-zero row and row a is not all-zero. 

According to Eq. (8), the input to neuron (a,p) and (b,p) is 

computed as 

m

n
BSvAvvdNet p

pj

japypy

y

aypa  


 ',1,1,, )(  

m

n
BSvAvvdNet p

pj

jbpypy

y

bypb  


 ',1,1,, )(  

where nS p  '0 , Suppose row a contains l “1” (1 <= l 

<= n + m -1), then 

m

n
BSvvdNet ppypy

y

bypb   '1,1,, )(  

m

n
Bnvvd pypy

y

by   2

1,1, )(  

m

n
BSvvdlANet apypy

y

aypa   '1,1,, )()1(

                   
m

n
vvdlA pypy

y

ay   )()1( 1,1,
 

 Let minmax

2 2 ddBnA  , where dmax and dmin 

is the maximum and the minimum distance, respectively. 

Then the CCM by is always convergent to valid states. 

It is clear that only one neuron’s output in per column 

be set to ‘1’ under WTA updating rule. Assume the 

network reaches the following state after some updating: 
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The input to each neuron in the pth column is 

calculated as 
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To ensure the neuron’s outputs reach the valid solution 

in the next updating, the neuron pbv , , should be the 

winner, since all the other neurons in row b is zero. In the 

other word, the input of the neuron pbv ,  should be the 

maximum one of all the inputs in pth column, 
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It is well known that 
tnsnst ddd  . Then it follows 

that stbsbt dddBnA  2
, which can be ensured 

by minmax

2 2 ddBnA  . The neuron outputs always 

escape from the invalid states. 

V. TO INVESTIGATE THE DYNAMICAL STABILITY OF 

THE CCM 

It is known that the stability of the original Hopfield 

networks is guaranteed by the well-known Lyapunov 

energy function. However, the dynamics of the CCM is 

so different from the Hopfield network, thus the stability 

of the CCM needs to be investigated. 

To investigate the dynamical stability of the CCM, a n

× n network  is considered. After the n-th WTA updating, 

the network would have reached the state with only one 

‘1’ per column, but may have more than one ‘1’ per row. 

Suppose tv  and 1tv  are two states before and after 

WTA updating respectively. Consider p-th column, and 

let neuron (a, p) be the only active neuron before 

updating, i.e., 1, t

pav  and 0, t

piv  , ai  . After 

updating, let neuron (b, p) be the winning neuron, i.e., 

11
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The energy function can be broken into three terms 

PE , qE , 0E  , that is, 0EEEE qp  . PE  stands 

for the energy of the columns p -1, p and p + 1 of the 

rows a and b. qE  stands for the energy of the groups. 0E  

stands for the energy of the rest columns and rows. Then 

PE  is computed by 
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To investigate how E changes under the WTA learning 

rule, the following two cases are considered. 

Case 1: (a,p) and (b,p) are both not group neuron 

In this case 0 < a, b < n, it can be seen that only PE  

will be affected by the state of column p. 
t
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At the same time, the input to neuron (a,p) and (b,p) 

before updating are computed as follows: 
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Case 2: (a,p) is a group neuron while (b,p) is not 

In this case n < a < n + m while 0 < b < n, it can be 

concluded that not only PE  but also qE  would be 

changed before and after the WTA updating rule in pth 

column. (a, p) is group neuron, it can be active before 

updating while non-active after updating. This implies 

that two connected groups which be distinguished by 

neuron (a, p) before updating merge into one group after 

updating. Suppose 
t

gs  and 
t

hs  represent the customer’s 

number of those two connected groups before updating, 

and 
1t

ps  stands for the customer’s number of this merged 

group after updating. Then, 
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VI. THE NEURAL NETWORK MODEL PRESENTED TO 

SOLVE CVRP 

It is clear that there are m sub-tours in a valid solution 

of the n-customers and m-loop CVRP problems, and each 

sub-tour starts with the starting city. To map this problem 

into the network, an appropriate representation scheme of 

neurons should be required. It is well known, a n*n 

square array has been used in n-city TSP problem by 

Hopfield, but it is not enough for CVRP problem. 

Thus, m -1 customers are added to the network, and 

those customers are called as the virtual cities. The virtual 

customers have the same connections and weights as the 

starting depot. The location information of a virtual 

customer is specified by the output state of m -1 neurons 

in the representation scheme. Those neurons are defined 

as the group neurons. Hence, m  loops are distinguished 

easily by those virtual customers using a (n + m -1) * (n + 

m-1) square matrix.  For example, a 4- customer and 2-

loop problem, an original feasible solution and the new 

one after adding the virtual costumer as shown in Fig. 1. 

It needs (5 + 2 - 1) * (5 + 2 -1) = 36 neurons to represent 

the neurons’s output states. 

 

Figure 1.  The feasible solution and the tour with the virtual costumer. 

In Fig. 1, the left is the feasible solution tour. The right 

is the tour after adding the virtual depot. C1 is the depot, 

and F is the virtual depot. 

The following output states of neurons represent a 

multi-tour with 2 tours. C1 is the starting depot. C3 is the 

second and C4 is the third of the first tour. C6 is the 

virtual depot which represent depot C1. The second tour 

starting from C6(C1), visited C2, C5 in sequence. To sum 

up, the first tour is C1 _ C3 _ C4 _ C6(C1) and the 

second is C6(C1) _ C2_ C5 _ C1(C6).  

 1 2 3 4 5 6 

C1 1 0 0 0 0 0 

C2 0 0 0 0 1 0 

C3 0 1 0 0 0 0 

C4 0 0 1 0 0 0 

C5 0 0 0 0 0 1 

C6 0 0 0 1 0 0 

VII. THE SIMULATION EXPERIMENT 

Assume 19 customers are randomly distributed in the 

fields of square area whose edge is 10 kilometers. The 

depot is located in the centre of square area, whose 

coordinates are (0, 0). The demand of every customer is 

generated by the computer randomly, and the vehicle load 

is 9 ton. Customer Number, customer coordinates and 

demand are shown in Table I. 

TABLE I.  NUMBER, COORDINATES AND DEMAND OF CUSTOMERS 

customer N01 N02 N03 N04 N05 N06 N07 

coordinates (1,-1)  (1,-2) (-4,-1) (-4,0) (1,3) (-4,-4) (-2,-2) 

demand 1.7   3.0 2.5 1.0 0.6 0.8 2.0 

customer N08 N09 N10 N11 N12 N13 N14 

coordinates (0,3)  (0,-1) (3,-1)  (-1,-1) (-3,2) (1,-4) (2,1) 

demand 1.8  1.5 1.5   0.1 3.1 2.2 0.5 

customer N15 N16 N17 N18 N19   

coordinates (2,-1)  (1,-3) (2,0) (-3,0) (3,4)   

demand 0.7    2.0 1.9 2.4 0.2   

 

With the CCM, the best solution is four routes: 

route1: 0→12→0; 

route2: 0→9→13→16→2→0; 

route3: 0→18→4→3→6→7→11→0; 

route4: 0→8→5→19→14→3→10→15→1→0. 

VIII. CONCLUSION 

In the research, a new columnar competitive model 

(CCM) incorporating the WTA learning rule has been 

proposed for solving CVRP which is the basic version of 

the VRP. 

The stability condition of CCM for CVRP was 

exploited. According to the theoretical analysis, the 

critical values of the network parameters were found. The 

simulation result shown that WTA updating rule makes 

CCM an efficient and fast computational model for 

solving CVRP. 

For time limit, the algorithm is just tested on 

simulation experiments. In the future, more tests will be 

carried out to check the performance of the algorithm. 

Moreover, there is still a big room for improvement of the 

algorithm in the future. Also, the proposed CCM will be 

applied to other problems. 
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