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Abstract—This paper summarizes a performance evaluation 

of the automatic incident detection algorithm deployed by 

many traffic management centers across the State of Texas, 

USA after a few years of implementation in the field. This 

analysis is the first step towards improving performance of 

incident detection which will eventually help optimizing 

freeway incident management practices at these TMCs. To 

conduct this analysis, the researchers used archived ITS 

data, particularly freeway incident alarms and incident 

scenarios data, as well as a geodatabase of ITS features. 

Matching alarm and scenario data enabled the 

determination of two performance measures: incident 

detection rates and false alarm rates. While many 

researchers evaluated the performance of their proposed 

incident detection algorithms, only a few assessed the actual 

performance of these algorithms after long period of 

implementation. Although the analysis described in this 

paper uses data from one jurisdiction (San Antonio, Texas), 

the methodology is sufficiently generic to enable 

implementation at other traffic management centers.
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I. INTRODUCTION 

Congestion caused by freeway incidents is a major 

contributor to urban traffic congestion. Therefore, 

incidents related functions at transportation management 

centers (TMCs) constitute most of their daily operations, 

including detection, verification, response, and clearance 

of incidents to activating efficient traffic management 

plans to alleviate incident-related congestion. 

The body of knowledge in this area is expanding and 

includes topics such as evaluation of incident 

management program benefits, development of 

procedures to estimate incident delay, forecasting of 

incident duration, prediction of incidents frequency, and 

automatic detection of freeway incidents.  

The main purpose of this paper is to evaluate in greater 

detail incident detection performance at a sample TMC in 

Texas (San Antonio’s TransGuide) after several years of 

deployment. This analysis is the first step towards 

improving the performance of incident detection which 

will eventually help optimizing freeway incident 

management practices at the TMC. 
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The paper starts with a short literature review of some 

of the automatic incident detection (AID) algorithms, 

followed by a summary of the data-mining process to 

extract incident data from archived ITS data sources. An 

overall assessment of effectiveness of the automatic 

incident detection process at the selected sample TMC is 

also discussed, followed by a summary and conclusion. 

II. AUTOMATIC INCIDENT DETECTION ALGORITHMS 

TMCs use a variety of techniques to detect roadway 

incidents. Examples include detector-based alarms, 911-

based alarms, closed caption television (CCTV) camera 

scanning, police radio scanning, courtesy patrols, 

motorist assistant dispatch, and commercial traffic 

services. TMCs are increasingly relying on drivers calling 

on their cell phones to report incidents, which has led 

some TMC officials to begin questioning the feasibility to 

continue making considerable investments on road-based 

detectors and associated hardware and software 

infrastructure. Nevertheless, in jurisdictions where road 

detectors are already in place, detector-based incident 

detection remains an important incident management tool. 

Detector-based incident detection algorithms typically 

follow one of the following approaches: 

A. Comparative Approach 

Algorithms that follow this approach compare 

measured traffic conditions against predetermined 

thresholds and trigger an alarm if the field measures cross 

the thresholds. Examples of this type of algorithm are the 

California algorithm series, which use absolute and 

relative differences in occupancy values [‎1] and the 

Texas algorithm, which uses moving average occupancy 

values. The Texas AID algorithm falls within this 

category, except that it uses speed data from speed-trap 

detectors and percent occupancy data from non-speed-

trap loop detectors. Comparative algorithms are simpler 

than other algorithms. Many implementations rely on 

static thresholds, making them relatively inefficient for 

handling fluctuating traffic demands [‎2]. Some 

implementations enable managers to vary thresholds 

using pre-specified criteria, e.g., by time of day, but 

populating threshold lookup tables frequently remains an 

incomplete task. 
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B. Statistical Approach 

 Algorithms that follow this approach use statistical 

procedures to detect significant deviations in traffic 

patterns over time as compared to predictable patterns. 

Examples of this type of model include the standard 

normal deviate model [‎3], which uses the mean and 

standard deviation of occupancy values, time-series 

models [‎4], which use autoregressive integrated moving 

average (ARIMA) predictions of occupancy values, and 

the Minnesota algorithm [‎5], which uses a low-pass filter 

to remove high-frequency components in observed data. 

Statistical models require data to follow pre-specified 

statistical theory models, thus limiting their wide 

applicability.  

C. Traffic Modeling Approach 

Algorithms that follow this approach use complex 

traffic-flow theoretical models to predict deviations from 

normal conditions using current traffic measurements as 

well as historical trends. An example of this type of 

algorithm is the McMaster algorithm, which relies on the 

volume-occupancy relationship to determine when 

conditions change at individual detection stations [6]. 

D. Artificial Intelligence Approach 

Algorithms that follow this approach use artificial 

intelligence techniques such as neural networks [7], fuzzy 

logic [8], and Wavelet [9]. Although these techniques do 

not pre-assume theoretical traffic models, they 

nonetheless require extensive calibration. They are also 

among the most recent examples of algorithm 

development work and for the most part remain untested 

under real-world operating conditions. 

III. INCIDENT DATA MINING 

To conduct their analysis, the researchers prepared two 

datasets for the analysis collected from San Antonio’s 

TMC (TransGuide) in Texas, USA. The first dataset 

contained freeway incident data. The bulk of incident 

data was obtained from a database (called scenario 

database) that documents dynamic message sign (DMS) 

and lane control sign (LCS) messages displayed by 

operators of the TMC in response to events on the roads.  

The scenario database includes a header table, which 

keeps a log of all scenarios loaded and contains 

information the researchers considered useful for 

characterizing incidents, and an execution table, which 

keeps a log of all DMS and LCS messages displayed in 

the field. 

For the analysis, the researchers used data from 792 

days (about 27 months) during which the database 

included about 60,800 scenario records distributed among 

nine scenario categories (i.e. incident types): congestion, 

construction, weather, train crossing, major accident, 

minor accident, stalled vehicle, debris, and unknown type.  

Of interest to this research were four scenario types that 

pertained to nonrecurring, unplanned incidents: major 

accident, minor accident, stalled vehicle, and debris. 

Although compiling incident data for these four scenario 

types would seem straightforward, it was necessary to 

apply several quality control measures to the original data. 

The resulting incident (scenario) dataset which the 

researchers used in their analysis contained over 19,500 

records. 

The second dataset contained alarms (or events) 

triggered by the TransGuide’s incident detection 

algorithm, which creates an event record in response to 

any noticeable abnormality in traffic resulting from an 

event on the road. Detector-based alarms rely on speed 

for speed-trap detectors (installed on main lanes and 

some ramps) and percent occupancy for non-speed-trap 

detectors (mostly installed on entrance and exit ramps).  

For speed-trap detectors, if a moving 2-minute average 

speed (continuously aggregated from 20-second speed 

data) drops below 25 mph, the system automatically 

triggers a minor (yellow) alarm. If the moving 2-minute 

average speed drops below 20 mph, the alarm becomes a 

major (red) alarm. For non-speed-trap detectors, the 

default minor and major alarm thresholds are 25 percent 

occupancy and 35 percent occupancy, respectively. It 

may be worth noting that these thresholds are default 

values and while the system allows users to set up 

different thresholds by time of day, day of week, or day 

of the year, TransGuide officials rarely modify the default 

settings, partly because of the lack of a formalized 

procedure to access and analyze archived ITS data trends 

that could suggest that modifying default values could 

result in a more effective incident detection and alarm 

handling process. In total, for the analysis period, the 

alarm dataset contained records for 202,690 alarms. 

IV. INCIDENT DETECTION ALGORITHM ASSESSMENT 

A. Performance Measures Used 

Three commonly used measures to conceptualize 

and/or assess the performance of incident detection 

algorithms are: 

 Detection Rate (DR): It is the ratio of the number 

of detected incidents to the total number of 

recorded incidents. 

 False Alarm Rate (FAR): It is the ratio of 

incorrect decisions (false positives) to the total 

number of algorithm decisions made. 

 Detection Time (DT): It is the time interval 

between the moment the incident occurred and 

the time the incident was detected. 

Typically, detection rate is directly proportional to the 

detection time.  Likewise, the false alarm rate is inversely 

proportional to the detection time. Generally, by 

increasing the time it takes for the algorithm to detect 

incidents (which would result, e.g., from using a more 

sophisticated algorithm), it is possible to increase the 

detection rate while, at the same time, reducing false 

alarm rates. Unfortunately, a longer detection time would 

also result in a longer incident response time, which is 

normally undesirable. Likewise, a too short detection 

time (which would result, e.g., from using a relatively 

simple algorithm), while desirable, would also result in 

low detection rates and high false alarm rates.  

Consequently, it becomes necessary to calibrate the 
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incident detection algorithm to achieve an acceptable 

balance between detection rates, false alarm rates, and 

detection times. 

B. Matching Alarms to Incidents 

In an ideal situation, the number of records in the two 

datasets would be the same, with a record in the incident 

dataset having a corresponding matching record in the 

alarm dataset. In practice, because of false alarms, 

potentially erroneous scenario records, and other factors, 

there is not a perfect match between incident records and 

alarm records.  In general, as Figure 1 shows, there are 

three possible matching outcomes: 

 Incident Detected: This occurs if an incident 

actually happened (a scenario was deployed) and 

the alarm incident handler triggered an alarm. 

 False Negative: This occurs if an incident actually 

happened (a scenario was deployed) and the 

alarm incident handler did not trigger an alarm. 

 False Positive: This occurs if an incident did not 

happen (a scenario was not deployed) but the 

alarm incident handler triggered an alarm. 

 

   
LCU Subsystem Triggered 

Alarm? 

   Yes No 

Scenario 

Deployed? 

Yes 
Incident 

Occurred 

Incident 

Detected 

False 

Negative 

No 

No 

Incident 

Occurred 

False Positive  

Figure 1.  Possible Incident versus Alarm Dataset Matching Outcomes. 

To find the number of detected incidents, the 

researchers attempted to match incidents reported in the 

incident (scenario) database to alarms recorded in the 

alarm (event) database.  Because of the lack of a common 

link between these two datasets (more specifically, an 

incident ID), the researchers had to develop a “fuzzy” 

spatio-temporal query methodology whereby an incident 

would be considered detected if the system triggered an 

alarm within a pre-specified spatio-temporal window 

associated with an incident record (Figure 2). The reason 

behind this fuzzy range concept was to account for 

situations such as an alarm being triggered before or after 

operators deployed a scenario (which almost always 

happens because the two datasets are not synchronous), 

an alarm being triggered on a sector other than where the 

incident actually happened, and scenarios being reported 

on the wrong sector. Figure 3 illustrates the query 

building process, which used a geodatabase structure 

described in [10]. 

A preliminary analysis suggested using a spatio-

temporal window composed of three highway sectors 

(including the sector of interest as well as the adjacent 

upstream and downstream sectors) and a 10-minute range 

before and after the scenario execution time. To test this 

hypothesis, the researchers conducted a sensitivity 

analysis (Figure 4). As Figure 4a shows, the number of 

matched incidents and alarms increased with the number 

of sectors considered.  

 

Figure 2.  Spatio-Temporal Query Concept. 

 

Figure 3.  Query Building Process to Match Incidents to Alarms. 

However, the rate of increase in the number of matches 

flattened after including more than three sectors in the 

query (the sector of interest as well as the adjacent 

upstream and downstream sectors), clearly suggesting 

that the chances of sector mismatch decreased 

considerably outside the three sector window. Figure 4b 

shows that the number of matched incidents and alarms 

increased as the time window size increased. In this case, 

the number of matches did not flatten, suggesting the 

possibility of an increasing number of alarm records 

incorrectly matching incident records and that using time 

window size was not necessarily a strong query 

parameter. Nonetheless, since it was necessary to use a 

time window factor for the query building process 
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anyway, the researchers decided to maintain the 10-

minute range before and after the scenario execution time. 
(a) Spatial window sensitivity 

 

(b) Temporal window sensitivity 

 

Figure 4.  Sensitivity Results for Incident-Alarm Matching Query. 

V. RESULTS & ANALYSIS 

Figure 5 summarizes the results of the matching 

operation. Out of 19,553 incidents during the 792-day 

analysis period, 3,828 incident records had a matching 

alarm record. Likewise, 4,651 alarm records had a 

matching incident record. Therefore,  

 

19.58% 100%
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 (DR) RateDetection 
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7921,463  4,320
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decisions algorithm of No.
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



 

 

This calculation assumed for simplicity that the 

algorithm made 4,320 decisions per detector per day 

(once every 20 seconds) and that all 1,463 detectors in the 

geodatabase were operational all the time during the 792-

day analysis period. 

It was not possible to calculate the third performance 

measure (detection time) because the archived incident 

data did not provide a measure for when incidents 

actually happened in relation to the time the system 

detected the incidents. 

 

Figure 5.  Summary of Matching Results. 

An analysis of these numbers yields the following results: 

 

 The incident detection rate was 19.6 percent. 

However, this detection rate included major and 

minor accidents, stalled vehicles, and debris. After 

excluding debris incidents from the analysis, the 

incident detection rate would grow to 20.0 percent 

(3,695 detected incidents relative to 18,427 

recorded incidents). Likewise, excluding debris 

and stalled vehicle incidents from the analysis 

would result in an incident detection rate of 24.8 

percent (2,755 detected incidents relative to 

11,083 recorded incidents). Excluding debris, 

stalled vehicles, and minor accidents would result 

in an incident detection rate of 27.2 percent (1,789 

detected incidents relative to 6,571 recorded 

incidents). In general, these percentages indicate 

that the incident detection algorithm is responsible 

for the detection of 20 to 27 percent of incidents 

detected at TransGuide. The literature reports 

detection rates that are typically much higher—

between 60 and 100 percent [11] and [12], but it 

also includes references to detection rates in the 30 

to 50 percent range [13]. Readers should be aware 

that many high detection rate reports in the 

literature use very small sample sizes and/or pre-

set thresholds calibrated under the assumption of 

“normal flow” conditions; actual performance on 

the ground tends to be lower [14]. 

 A false alarm rate of 0.0039 percent is relatively 

low compared to rates typically found in the 

literature—between 0.0018 and 1.9 percent [12]. 

However, it may be worth noting that a very low 

false alarm rate, although desirable, is not a good 

performance measure by itself because it may be 

masking operator unacceptability issues that 

would stem from the use of strategies resulting in 

higher false alarm rates [14]. 

VI. CONCLUSION 

This paper presented an evaluation of the performance 

of an incident detection algorithm after a few years of 

implementation. Towards this, the researchers prepared 

two datasets. The first dataset contained data from the 

scenario (incident) database, under the assumption that 

this database provided an accurate depiction of the 

history of incidents along the freeway network covered 

by the TMC. The second dataset contained alarms 

triggered by the incident detection algorithm in response 
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to events on the road. The lack of a common link between 

the two datasets led to the use of a “fuzzy” spatio-

temporal query methodology that considered an incident 

to be detected if the incident detection algorithm 

triggered an alarm within a pre-specified spatio-temporal 

window associated with an incident record.  

Matching alarm and incident data enabled the 

determination of performance measures such as incident 

detection rates and false alarm rates. The incident 

detection rate, which included major and minor accidents, 

stalled vehicles, and debris, was 20 percent. After 

excluding debris, stalled vehicles, and minor accidents, 

the incident detection rate increased to 27 percent. The 

literature reports detection rates that are typically much 

higher (60 to 100 percent), but readers should be aware 

that many high detection rates in the literature are based 

on very small sample sizes and/or pre-set thresholds 

calibrated under the assumption of “normal flow” 

conditions. Actual performance on the ground tends to be 

lower. For example, there are references to detection rates 

in the 30 to 50 percent range. The false alarm rate was 

0.0039 percent, which was low compared to rates 

typically found in the literature (0.002 to 1.9 percent). It 

may be worth noting that a very low false alarm rate, 

although desirable, is not a good performance indicator 

by itself because it may be masking operator 

unacceptability issues that would stem from the use of 

strategies resulting in higher false alarm rates.  

Further research is recommended to assess the 

feasibility of modifying current incident detection alarm 

thresholds at the TMC to increasing detection rate while 

minimizing the impact on false alarm rate. 
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